
Counterfactual explanations for
Workforce Scheduling and Routing Problems

Mathieu Lerouge13 a, Céline Gicquel2 b, Vincent Mousseau1 c and Wassila Ouerdane1 d

1MICS CentraleSupelec Universite Paris-Saclay Gif-sur-Yvette France
2LISN Universite Paris-Saclay Gif-sur-Yvette France

3DecisionBrain Paris France
{mathieu.lerouge, vincent.mousseau, wassila.ouerdane}@centralesupelec.fr, gicquel@lri.fr

Keywords: Workforce scheduling and routing problem, Integer Linear Programming, Counterfactual explanation

Abstract: End-users of system solving combinatorial optimization problems such as the Workforce Scheduling and
Routing Problem usually do not have the necessary background for understanding the reasons which has lead
the system to output specific solutions and may have questions about them, especially questions about non-
expected facts observed in the solutions. Developing techniques to automatically generate explanations in
response to end-users questions would then help enhancing their understanding of the results and preserve
their trust in the system. In this paper, we propose a new mathematical programming-based approach to
compute counterfactual explanations in response to end-users’ questions. Such explanations emphasize the
few changes that may be operated on the instance data for obtaining solutions corresponding to the end-users’
expectations.

1 INTRODUCTION

The Workforce Scheduling and Routing Prob-
lem (WSRP) is a Combinatorial Optimization (CO)
problem which involves assigning geographically dis-
persed tasks to members of a mobile workforce and
creating a pair of route and schedule for each of these
members. It occurs in various contexts like home
health care (e.g. (Euchi et al., 2022)) or technical ser-
vice (e.g. (Chen et al., 2016)). A literature review on
this problem may be found in (Castillo-Salazar et al.,
2016).

The WSRP is an NP-hard problem, and various
approaches have been proposed to solve it. In the
industry, practitioners often solve WSRP instances
thanks to decision-aid tools based on mathematical
optimization. Our industrial partner in this research
project (DecisionBrain, 2022) develops such tools to
help its customers solve WSRP instances.

However, most often, the end-users of this soft-
ware are not experts in operations research and thus
do not have the necessary background to understand

a https://orcid.org/0000-0002-0949-1737
b https://orcid.org/0000-0002-2719-7443
c https://orcid.org/0000-0001-8574-3337
d https://orcid.org/0000-0002-4515-7461

the mathematical modeling or the algorithmic princi-
ples on which these decision-aid tools are built. Thus,
when provided with solutions of WSRP instances,
they may be surprised by some unexpected facts ob-
served in the solutions and may wish to obtain addi-
tional explanations about them.

To illustrate the context, let us consider a small in-
stance of the WSRP involving five mobile members,
also called employees, and 31 tasks to be performed
over a one-day horizon. Figure 1 displays the solu-
tion obtained with an optimization software. Each
employee is associated with a color (e.g. the red one
is related to the employee Ellen). The graph on the
left represents the employees’ routes: colored dots
are tasks performed by employees and gray ones non-
performed tasks, while squares correspond to employ-
ees’ starting locations. The Gantt chart on the right
depicts the employees’ schedules: higher and colored
rectangles represent tasks; smaller and gray ones rep-
resent employees’ traveling times to go from one task
to another; for both groups, the width of a rectangle
matches the duration of what it represents.

Facing this solution, an end-user may be surprised
by the fact that the task 15 is not performed by Ellen
(El in Figure 1) while it is not far from her route.
Then, the end-user may wish to get an explanation
to clear up the situation.



14.5 14.75 15.0 15.25 15.5 15.75 16.0 16.25

47.25

47.5

47.75

48.0

48.25

48.5

longitude

la
tit

ud
e

El

Al

Ad

Fa

Ca

12

15

27

31

1

3 7

8

17

26

30
6

14

16

19
20

25

28

910

11

24

4

13

18

21
2229

25

23

El

Al

Ad

Fa

Ca

7AM 9AM 11AM 1PM 3PM 5PM 7PM

hour

7 30 3 26 1 17 8

28 16 25 14 20 6 19

11 9 10 24

13 18 21 29 4 22

5 23 2

Figure 1: Representation of a WSRP solution (Lerouge et al., 2022).

For optimization experts, answering such queries
for explanations requires a lot of time and effort. It
namely involves getting familiar with the instance
and the solution, investigating the data without being
overwhelmed by the high combinatorial aspect of the
problem and finding concise pieces of explanations
to provide to the end-user. However, providing these
explanations is necessary as it helps to preserve the
end-users’ trust in the system and their confidence at
work by enhancing their understanding of the results.
Thus, developing techniques for automatically gener-
ating explanations in response to end-users questions
would improve both end-users’ and optimization ex-
perts’ situations.

Automatic generation of explanations in the con-
text of decision support tools falls within the field
of eXplainable Artificial Intelligence (XAI) (Gunning
and Aha, 2019) and has been heavily studied by the
machine learning community over the past decade
(Barredo Arrieta et al., 2020). However, to our knowl-
edge, few works addressed this topic for decision sup-
port tools solving CO problems: see (Ludwig et al.,
2018; Čyras et al., 2019; Korikov et al., 2021). More-
over, these works rely on strong assumptions about
the studied CO problem and the provided explana-
tions that limit their applicability to other CO prob-
lems, such as the WSRP.

A noticeable exception is the work of (Lerouge
et al., 2022). The authors propose to tackle this is-
sue in the context of the WSRP by focusing on ex-
planations provided in response to “why-not” ques-
tions, also known as contrastive questions, i.e. ques-
tions having the following form “why not that fact in-

stead of this one?” (Lipton, 1990). Essentially, the
proposed method is based on identifying and narrat-
ing conflicts between the instance data and “that other
fact” which the end-user was expecting to observe in
the solution. If we go back to our example, such a
contrastive question is e.g. “Why is Ellen not per-
forming task 15 in addition to her already-performed
tasks?”. In response to it, the authors design an expla-
nation that highlights conflicts, e.g. conflicts between
the availability time-windows of the tasks, which tells
why it is impossible to make Ellen performs the task
15 in her already-performed tasks without violating
some of the availability constraints.

From now on, let us name desideratum “that other
fact” which the end-user was expecting to observe
in the solution. The end-user may also raise ques-
tions differing from “why-not” questions, especially
questions like “how to make the desideratum possi-
ble?”. For instance, in the context of our illustrative
example, such a question may be “How to make Ellen
perform task 15 in addition to her already-performed
tasks?”. These “how-to” questions ask for counter-
factual explanations: given an input of a system and
its corresponding output, a counterfactual explanation
consists in presenting a change in the input that would
have resulted in a different output such as one sat-
isfying the end-user-specified desideratum. Counter-
factual explanations are attractive as they are easy to
comprehend and can be used to offer a path of re-
course to end-users receiving unfavorable decisions.
Moreover, it was argued by (Wachter et al., 2018) that
counterfactual explanations are well aligned with the
European Union’s General Data Protection Regula-
tion (GDPR) requirements (GDPR, 2016).



Recently, (Korikov et al., 2021) proposed a
method to compute counterfactual explanations for
CO problems by leveraging inverse optimization.
However, their method is restricted to a specific class
of CO problem which does not include the WSRP.
Besides, it assumes that at most one data element
(specifically a coefficient in the objective function
which does not appear in any constraint) may be
changed to obtain the counterfactual explanation. In
our case, such an assumption does not hold, as all the
coefficients involved in the objective function also are
in the constraints. Therefore, their method cannot be
straightforwardly applied to our WSRP case.

Thus, in this paper, we propose a new mathemat-
ical programming-based approach to compute coun-
terfactual explanations for an end-user of a WSRP-
solving system. Given a solution of a WSRP instance
as well as end-user’s questions focusing on this solu-
tion and satisfying certain assumptions, this method
provides counterfactual explanations. Such explana-
tions emphasize the few changes that may be operated
on the instance data, which would be enough for ob-
taining outputs satisfying the end-user’s desiderata.

The remainder of this article is organized as fol-
lows. In Section 2, we clarify our WSRP use case by
detailing the content of an instance, introducing at the
same time various notations, and presenting an Inte-
ger Linear Program modeling this problem. In Sec-
tion 3, we describe our approach for generating coun-
terfactual explanations, which are then provided to the
end-user of a WSRP-solving system. Finally, conclu-
sions and perspectives are given in Section 4.

2 WORKFORCE SCHEDULING
AND ROUTING PROBLEM

As mentioned in Section 1, the Workforce
Scheduling and Routing Problem (WSRP) consists
of assigning tasks to mobile workforce members and
creating a pair of routes and schedules for these mem-
bers. In this section, we describe our WSRP use case,
more precisely the content of any instance and its cor-
responding Integer Linear Programming (ILP) model.

In our use case, we consider a scheduling hori-
zon of one day i.e. 1440 minutes. An instance in-
volves a set of employees E = {1, . . . , n} and a set
of tasks T = {1, . . . , m}. Each employee i ∈ E has a
name, a starting location, which we call home for the
sake of simplicity, a skill level skei ∈ N and working
time-window [lbei, ubei] ⊆ [0, 1440]∩N. Each task
j ∈ T has a specific location, a required skill level

skt j ∈ N, a duration dt j ∈ N and an availability time-
window [lbti, ubti] ⊆ [0, 1440]∩N. We assume that
hours in time-windows are expressed in minutes from
12:00AM (e.g. 8:00AM = 480).

For performing tasks, employees leave their
homes when they start their working day and return
there when they end it. In order to model these
two home events, we introduce, for each employee
i ∈ E , a departure index di as well as a return in-
dex ri - where all the indices di and ri for i ∈ E
are different from each other and different from the
indices of T = {1, . . . , m}. We then extend the
set of tasks T with the set of departure indices and
the set of return indices to form a set of activities
A = T ∪{d1, . . . , dn}∪ {r1, . . . , rn}. Besides, for
each employee i ∈ E , we note Ai = T ∪{di, ri} the
set of activities obtained by extending T with the de-
parture and return indices of i.

Finally, an instance also involves traveling times.
The time needed to travel between two activities
( j,k) ∈ A2 is assumed to be independent of the em-
ployee and is noted tr jk ∈ N.

The instance data on which Figure 1 is based are
given in the Table 2 of the Appendix A.

In order to model the WSRP using Integer Linear
Programming (ILP), we introduce two sets of deci-
sion variables.

The first one corresponds to spatial decisions. We
introduce, for i ∈ E and ( j,k) ∈ A2

i with j ̸= k, a bi-
nary variable Ui jk such that Ui jk = 1 if employee i per-
forms activity j and then moves to activity k; Ui jk = 0
otherwise. By assigning tasks to employees and spec-
ifying the order in which the tasks are performed,
these variables define the route of each employee.

The second set of variables corresponds to tem-
poral decisions. We introduce, for each j ∈ T , the
integer variable Tj that sets the time at which j starts
to be performed by an employee if it is.

Based on the data of the instance and the decision
variables that we previously described, we model the
WSRP using ILP as presented in Model 1.

The bi-objective function (1) is maximized ac-
cording to a lexicographic order: the first objective
equals the total working time, and the second to the
opposite of the total travel time.

Flow constraints (2) to (4) ensure that the em-
ployees start from their homes, go from tasks to oth-
ers without splitting into multiple directions, and end
their working day at home. Skill constraints (5) en-
sure that an employee i can be assigned to a task
j only if i has a skill level higher than the one re-
quired for performing j. Occurrence constraints (6)
ensure that a task j must occur at most once within all
employees’ routes. Availability constraints (7) to (8)



lex max
(

∑
i∈E

∑
j∈T

∑
k∈Ai, k ̸=di, j

Ui jk dt j, − ∑
i∈E

∑
j∈Ai, j ̸=ri

∑
k∈Ai, k ̸=di, j

Ui jk tr jk

)
(1)

s.t.

∑
k∈Ai, k ̸=di

Uidik = 1 ∀ i ∈ E (2)

∑
j∈Ai, j ̸=ri

Ui jri = 1 ∀ i ∈ E (3)

∑
j∈Ai, j ̸=k,ri

Ui jk = ∑
j′∈Ai, j′ ̸=di,k

Uik j′ ∀ i ∈ E , ∀ k ∈ T (4)

∑
k∈Ai, k ̸=di, j

Ui jk ≤ 1{skt j≤skei} ∀ i ∈ E , ∀ j ∈ T (5)

∑
i∈E

∑
k∈Ai, k ̸=di, j

Ui jk ≤ 1 ∀ j ∈ T (6)

∑
i∈E

∑
k∈Ai, k ̸=di, j

Ui jk lbt j ≤ Tj ∀ j ∈ T (7)

Tj ≤ ∑
i∈E

∑
k∈Ai, k ̸=di, j

Ui jk (ubt j −dt j) ∀ j ∈ T (8)

∑
i∈E

Uidik(lbei + trdik)≤ Tk ∀ k ∈ T (9)

Tj +dt j + ∑
i∈E

Ui jk tr jk ≤ Tk +
(

1− ∑
i∈E

Ui jk

)
ubt j ∀ ( j,k) ∈ T 2, j ̸= k (10)

Tj +dt j ≤ ∑
i∈E

Ui jri(ubei − tr jri)+
(

1− ∑
i∈E

Ui jri

)
ubt j ∀ j ∈ T (11)

Ui jk ∈ {0,1} ∀ i ∈ E , ∀ j ∈ Ai \{ri}, ∀ k ∈ Ai \{di, j}
Tj ∈ N ∀ j ∈ T

Model 1: Bi-objective Integer Linear Program modeling our Workforce Scheduling and Routing Problem use case.

ensure that if a task j is performed by an employee
then j must be started and ended within its availabil-
ity time-window [lbt j, ubt j]. Work and sequencing
constraints (9) to (11) ensure that if an employee i
performs a task j then j must be started and ended
within the working time-window [lbei, ubei] of i.

The solution represented in Figure 1 is given in
Table 3 of the Appendix B.

Now that our use case has been specified, we can
proceed to the generation of counterfactual explana-
tions, which is the focus of the next section.

3 GENERATING COUNTER-
FACTUAL EXPLANATIONS

As mentioned in Section 1, this paper presents an
approach for generating counterfactual explanations
for an end-user who works with an optimization sys-
tem solving instances of Workforce Scheduling and
Routing Problem (WSRP). In this section, we de-
scribe how, by starting from the end-user’s questions
and moving to Integer Linear Programming (ILP), we
manage to produce such counterfactual explanations.

3.1 End-user’s questions

In our approach, we consider that the end-user
specifies a question to request an explanation. More-
over, the question - explanation pairs are such that: i)
They relate only to a given solution S of a instance,
noted I . ii) The question starts with the interrogative
form “how-to” to explicitly ask for counterfactual ex-
planations. iii) The question mentions a desideratum
i.e. a fact which is not observed in S that the end-user
would like to have in S (e.g. seeing a task that is not
performed by an employee in S be now performed by
this employee). In addition, we assume that we can
always find ways to transform the solutions so as to
satisfy the end-user’s desideratum (e.g. inserting the
non-performed task in the employee’s route).

Table 1 lists potential questions which satisfy the
assumptions mentioned above. More precisely, it lists
template texts that can be used to express questions.
Each template text is associated with an identifying
label and contains one or several symbols ⟨.⟩ indicat-
ing fields to be specified with data from the instance
I (e.g. an employee or a task).

For instance, the end-user’s question, mentioned
in Section 1, “How to make Ellen perform the task 15
in addition to her already-performed tasks?” can be



Labels Template texts for end-user’s questions

(Q1) “How to make ⟨employee i∗⟩ perform ⟨task j∗⟩ just after ⟨activity k∗⟩?”

(Q2) “How to make ⟨employee i∗⟩ perform ⟨task j∗⟩ between two consecutive activities of their route?”

(Q3) “How to make ⟨employee i∗⟩ perform any non-performed task between two consecutive activities of their route?”

(Q4) “How to make any employee perform ⟨task j∗⟩ between two consecutive activities of their route?”

(Q5)
“How to make ⟨employee i∗⟩ perform ⟨task j∗⟩ in addition to their already-performed tasks
(even if it means changing their order)?”

(Q6) “How to make ⟨employee i∗⟩ perform ⟨task j∗⟩ in place of ⟨task k∗⟩?”

(Q7) “How to make ⟨employee i∗⟩ perform ⟨task j∗⟩ in place of any of their already-performed task?”

(Q8) “How to make ⟨employee i∗⟩ perform any non-performed task in place of ⟨task k∗⟩?”

(Q9) “How to make any employee perform ⟨task j∗⟩ in place of one of their already-performed tasks?”

(Q10)
“How to make ⟨employee i∗⟩ perform ⟨task j∗⟩ instead of any of their already-performed tasks
(even if it means changing their order)?”

(Q11) “How to make ⟨employee i∗⟩ perform ⟨task j∗⟩, later in their route, just after ⟨task k∗⟩?”

(Q12) “How to make ⟨employee i∗⟩ perform ⟨task j∗⟩, earlier in their route, just before ⟨task k∗⟩?”

(Q13) “How to make ⟨employee i∗⟩ perform ⟨task j∗⟩ later in their route?”

(Q14) “How to make ⟨employee i∗⟩ perform ⟨task j∗⟩ earlier in their route?”

(Q15) “How to make ⟨employee i∗⟩ perform ⟨task j∗⟩ at another position in their route?”

(Q16) “How to make ⟨employee i∗⟩ perform their already-performed tasks in a different order?”

Table 1: Non-exhaustive list of template texts for end-user’s questions.

obtained by filling (Q5) template text with fields val-
ues “Ellen” and “15”. In order to invoke this question
again, in future examples, we note it qex.

Before moving to the next section, let us highlight
what can be seen as a limiting requirement of our ap-
proach: as a person who provides explanations, one
needs to enumerate the end-user’s questions be enu-
merated and define them as template texts. However,
such a requirement helps providing a clear and rigor-
ous framework to our approach, while reaching our
main goal, which is generating counterfactual expla-
nations in response to various end-user’s questions.
That is why we also consider this requirement to be
reasonable.

In the following subsections, we describe how we
process an end-user’s question like qex.

3.2 From questions to ILP modeling

In order to answer an end-user’s question with a
counterfactual explanation, we exploit ILP. More pre-
cisely, given a question template text listed in Table 1,
we build a new small-size ILP model upon Model
1. This model aims at finding how to change the
instance data to obtain a solution satisfying the end-
user’s desideratum while minimizing the number and
magnitude of these changes. To do so, this ILP in-
volves decision variables and constraints which artifi-
cially alter the instance data.

Let us emphasize that the ILP model to be built
differs according to the template text of Table 1 used
to ask the question. Due to space limitation, we
choose to only describe the ILP model associated to a
question expressed thanks to (Q5) template text, like
qex. However, similar contents could be developed for
questions based on other template texts from Table 1.

3.2.1 Preliminaries

Before presenting the ILP model corresponding
to the question q, we need to introduce some nota-
tions, make additional assumptions about (Q5) tem-
plate text and specify which parts of the instance I
we plan to alter for the counterfactual explanation.

The text of q refers to a specific employee i∗ as
well as a specific task j∗ (both mentioned by (Q5)
text fields ⟨.⟩) and is relative to the solution S . We in-
troduce T ∗ = { j1, j2, . . . , jp}∪{ j∗} ⊆ T the subset
of tasks formed by the tasks performed by i∗ in S plus
the task j∗. For instance, in the case of qex, i∗ is Ellen,
j∗ is the task 15 and T ∗ = {1,3,7,8,15,17,26,30}.

For obvious reasons, the task j∗ should not be per-
formed by the employee i∗ in the solution S . For the
sake of simplicity, we assumed more generally that
j∗ is not performed by any employee, otherwise we
would have to deal with the changes to apply to this
other employee’s route and schedule which is not of
major significance. Besides, we also assumed i∗ is
skilled enough for performing j∗ otherwise we would



have to alter either the skill level of i∗ or j∗ which is
not really reasonable in practice.

About instance alterations, we need to choose
which data of I can be changed and by how much.
Such choices depend on the application context. In
some cases, it might be possible to extend the time
window of a task; sometimes, it might be inconceiv-
able. Ultimately, the end-user should be the one who
decides which data can be altered or not. To illus-
trate our approach, we propose in this paper to allow
changes of the availability time-window [lbt j, ubt j]
and duration dt j for all tasks j in T ∗. At the end of
Subsection 3.2, we will discuss other possible alter-
ation choices and their impact the ILP modeling.

3.2.2 The ILP Model

We can now proceed to the description of Model
2, i.e. the ILP model used for computing the counter-
factual explanation that answers q. Model 2 is based
on Model 1 but differs from it on various aspects, as
detailed in the following paragraphs.

An overall difference between the two models is
that Model 2 focuses on optimizing only the route and
schedule of a single employee, namely i∗, whereas
Model 1 deals with the routes and schedules of all the
employees of E . Such a restriction to i∗ in Model 2
is possible as the question q focuses on an end-user’s
desideratum about S which only relates to i∗ and the
subset of tasks T ∗.

The main consequence of this restriction is that
not all the decision variables of Model 1 are involved
in Model 2: only the binary variables Ui jk with i = i∗

and the integer variables Tj with j ∈ T ∗ are indeed
necessary for the Model 2. In other words, optimiz-
ing Model 2 can be seen as fixing in Model 1 all the
binary variables Ui jk with i ̸= i∗ as well as all the in-
teger variables Tj with j ∈ T \T ∗ to the values they
take in S and focusing the optimization over the set
of the remaining variables - plus other decision vari-
ables which will be described later in this subsection.
Due to this reduction of the set of decision variables,
a Model 2 solution does not provide directly a Model
1 solution i.e. a solution of the instance I . However,
in Subsection 3.3, we will see how build a Model 1
solution from S and a Model 2 solution.

Other consequences of this restriction to i∗ are
that: there are no sums over E or constraints repeated
over E in Model 2; sums indexed over T in Model 1
are indexed over T ∗ in Model 2; constraints repeated
over T in Model 1 are repeated over T ∗ in Model 2;
etc. Besides, this restriction leads to a drastic decrease
in the size of Model 2 compared with Model 1, which
helps to solve Model 2 faster.

Decision Variables. New kinds of decision vari-
ables are involved in Model 2, in addition to the spa-
tial ones, Ui∗ jk with ( j,k) ∈ A2

i∗ such that j ̸= k, and
the temporal ones, Tj for j ∈ T ∗, both introduced in
Section 2.
• First, two new integer variables T lb

j∗ and T ub
j∗ are

brought into play. Like Tj∗ , they are related to the
time at which the task j∗ starts to be performed
(by i∗): T lb

j∗ (resp. T ub
j∗ ) corresponds to the time

at which i∗ can start to perform j∗ while having
all the time constraints related to the activities per-
formed by i∗ before (resp. after) j∗ satisfied and
while respecting the lower (resp. upper) bound of
the availability window of j∗. By the way we in-
volve them in Model 2, these two variables allow
us to guarantee the feasibility of this model: ei-
ther T lb

j∗ > T ub
j∗ and it means that inserting j∗ in the

route of i∗ is impossible despite the potential alter-
ations of I , either T lb

j∗ = T ub
j∗ and it means that the

insertion is possible, since all the time constraints
of the activities performed by i∗ before and after
j∗ are satisfied.

• Second, several integer variables, so-called alter-
ing variables, are involved in Model 2 to arti-
ficially alter some data of the instance I . For
j ∈ T ∗, three integer variables ∆DTj, ∆LBTj and
∆UBTj are introduced allowing respectively to re-
duce the duration dt j of task j, to decrease the
lower bound lbt j of its time-window and to in-
crease its upper bound ubt j. In addition to these
altering variables, we introduce ∆Tmax, an integer
variable for measuring the greatest value taken by
any of the altering variables.

• Third, for j ∈ T ∗, we associate to the altering vari-
ables ∆DTj, ∆LBTj and ∆UBTj, the binary vari-
ables XDTj, XLBTj and XUBTj, which whether
equal to 1 or 0 indicates whether or not their cor-
responding altering variable take positive value.

Objective Function. In Model 2, a multi-objective
function (1’) is minimized according to a lexico-
graphic order.
1. As having T lb

j∗ = T ub
j∗ means that the insertion of j∗

in the route of i∗ is possible, the first objective aims
at tightening the gap between the two variables T lb

j∗

and T ub
j∗ by minimizing the difference T lb

j∗ − T ub
j∗ .

Note that the constraint (12.a) prevents the differ-
ence T lb

j∗ −T ub
j∗ from being negative.

2. The second objective minimizes the total reduc-
tion of tasks duration induced by altering variables
∆DTj for j ∈ T ∗. Its purpose is to enable decreas-
ing the duration of the performed tasks only if ex-
tending the tasks’ time-windows, via ∆LBTj and
∆UBTj, is not enough for successfully inserting j∗.



lex min
(

T lb
j∗ −T ub

j∗ , ∑
j∈T ∗

∆DTj, ∆Tmax, ∑
j∈T ∗

XDTj +XLBTj +XUBTj, ∑
j∈Ai∗ , j ̸=ri∗

∑
k∈Ai∗ , k ̸=di∗ , j

Ui∗ jk tr jk

)
(1′)

s.t.

∑
k∈Ai∗ , k ̸=di∗

Ui∗di∗ k = 1 (2′)

∑
j∈Ai∗ , j ̸=ri∗

Ui∗ jri∗ = 1 (3′)

∑
j∈Ai∗ , j ̸=k,ri∗

Ui∗ jk = ∑
j′∈Ai∗ , j′ ̸=di∗ ,k

Ui∗k j′ ∀ k ∈ T ∗ (4′)

∑
k∈Ai∗ , k ̸=di∗ , j

Ui∗ jk = 1 ∀ j ∈ T ∗ (6′)

lbt j −∆LBTj ≤ Tj ∀ j ∈ T ∗ \{ j∗} (7′.a)

lbt j −∆LBTj∗ ≤ T lb
j∗ (7′.b)

Tj ≤ ubt j +∆UBTj −dt j +∆DTj ∀ j ∈ T ∗ \{ j∗} (8′.a)

T ub
j∗ ≤ ubt j∗ +∆UBTj∗ −dt j∗ +∆DTj∗ (8′.b)

lbei∗ + trdi∗ k ≤ Tk ∀ k ∈ T ∗ \{ j∗} (9′.a)

lbei∗ + trdi∗ j∗ ≤ T lb
j∗ (9′.b)

Tj +dt j −∆DTj +Ui∗ jk tr jk ≤ Tk +
(

1−Ui∗ jk

)
ubt j ∀ j ̸= k ∈ T ∗ \{ j∗} (10′.a)

T ub
j∗ +dt j∗ −∆DTj∗ +Ui∗ j∗k tr j∗k ≤ Tk +

(
1−Ui∗ j∗k

)
ubt j∗ ∀ k ∈ T ∗ \{ j∗} (10′.b)

Tj +dt j −∆DTj +Ui∗ j j∗ tr j j∗ ≤ T lb
j∗ +

(
1−Ui∗ j j∗

)
ubt j ∀ j ∈ T ∗ \{ j∗} (10′.c)

Tj +dt j −∆DTj ≤Ui∗ jri∗ (ubei∗ − tr jri∗ )+
(

1−Ui∗ jri∗

)
ubt j ∀ j ∈ T ∗ \{ j∗} (11′.a)

T ub
j∗ +dt j∗ −∆DTj∗ ≤Ui∗ j∗ri∗ (ubei∗ − tr j∗ri∗ )+

(
1−Ui∗ j∗ri∗

)
ubt j∗ (11′.b)

T lb
j∗ −T ub

j∗ ≥ 0 (12.a)

T ub
j∗ ≤ Tj∗ ≤ T lb

j∗ (12.b)

∆DTj ≤ XDTj dt j ∀ j ∈ T ∗ (13.a)

∆LBTj ≤ XLBTj max(lbt j − lbei∗ , 0) ∀ j ∈ T ∗ (13.b)

∆UBTj ≤ XUBTj max(ubei∗ −ubt j, 0) ∀ j ∈ T ∗ (13.c)

∆DTj, ∆LBTj, ∆UBTj ≤ ∆Tmax ∀ j ∈ T ∗ (14)

Ui∗ jk ∈ {0,1} ∀ j ∈ Ai∗ \{ri∗}, ∀ k ∈ Ai∗ \{di∗ , j}

Tj ∈ N ∀ j ∈ T ∗

T lb
j∗ , T ub

j∗ ∈ N

XDTj, XLBTj, XUBTj ∈ {0,1} ∀ j ∈ T ∗

∆DTj, ∆LBTj, ∆UBTj ∈ N ∀ j ∈ T ∗

∆Tmax ∈ N

Model 2: Multi-objective program used for computing the explanation that answers a question based on (Q5) template text.



Such a preference for altering first time-windows
and then duration is applied as decreasing tasks’
duration actually depreciates the solution since, by
Model 1, the primary objective is to maximize the
total tasks duration performed by the employees.

3. The purpose of the third objective which mini-
mizes ∆Tmax is to prevent alterations from being
too large, as much as possible.

4. The one of the fourth is to prevent them being too
numerous, as much as possible.

5. Lastly, the fifth objective is linked to the second of
Model 1 as it minimizes the total traveling time.

Constraints. Most constraints of the Model 1 still
apply in the Model 2 but must be adapted. Flow con-
straints (2) to (4) correspond to constraints (2’) to (4’);
however (2’) to (4’) zoom on the employee i∗ and the
subset T ∗ while (2) to (4) involve the whole sets E
and T . Occurrence constraint (5) coincide with con-
straint (5’) but in the latter, as we look for adding j∗

among the tasks performed by i∗, all the tasks of T ∗

must be performed by i∗ hence the use of = in (5’) in-
stead of ≤ in (5). No equivalent of the skill constraint
(6) appears in the Model 2 as i∗ is supposed to have a
higher skill level than the ones of all the tasks of T ∗

(see our assumptions in Subsection 3.2.1). Availabil-
ity, working hours and sequencing constraints span-
ning labels from (7) to (11) in Model 1 are also in-
volved, with some changes, in Model 2 as labels span-
ning from (7’.a) to (11’.b). Each original constraint
of Model 1 (e.g. constraint (7)) is split into two or
three constraints in Model 2 (e.g. constraints (7’.a)
and (7’.b)) in order to separate the case of j∗, which
involves T lb

j∗ and T ub
j∗ , from the one of any other task

j in T ∗, which involves Tj.
In addition, new constraints are introduced in

Model 2. As mentioned earlier, constraint (12.a) pre-
vents the difference T lb

j∗ − T ub
j∗ from being negative.

Constraint (12.b) is simply used for controlling Tj∗

value which is no longer involved in any constraint.
Constraints (13.a) to (13.c) ensure that the binary vari-
ables XDTj, XLBTj and XUBTj for j ∈ T ∗ play their
expected role, namely indicating whether or not their
corresponding altering variable take a positive value.
Besides, these constraints limit the value of the al-
tering variables ∆DTj, ∆LBTj and ∆UBTj for j ∈ T ∗

to some “reasonable bounds”: the duration dt j of a
task j can not be reduced by more than its own value;
there is no point in having the lower and upper bounds
of the availability time-window of task respectively
smaller and higher than the lower and upper bounds
of the working time-window of employee i∗. Fi-
nally, constraint (14) ensure that ∆Tmax measures as
expected the greatest value taken by any of the alter-
ing variables.

Discussion. Before ending this Subsection 3.2, let
us comeback to the discussion, started up in Subsec-
tion 3.2.1, about the way I can be altered, in particular
which data can be changed and up to what bounds.

It is clear that there are many ways to alter the data
of I . In this paper, we chose to locate the potential
alterations on task availability time-window and du-
ration data, to allow such alterations on all the tasks
of T ∗ and to limit such alterations to some “reason-
able bounds”. However, one could also choose, for
instance, to locate alterations on employee working
time-window data in addition to the ones on the task
data, to allow task alterations only for some selected
tasks of T ∗, and to bound altering variables with ar-
bitrary smaller bounds than our “reasonable bounds”.

Still, such other choices could actually be taken
into account in Model 2 considering some adaptions.
One would have i) to introduce a pair of integer vari-
ables ∆LBEi∗ and ∆UBEi∗ , as well as their corre-
sponding binary variables XLBEi∗ and XUBEi∗ , for
altering the time-window of i∗; ii) to only consider
∆LBTj, ∆UBTj and ∆DTj for the selected tasks of T ∗;
iii) to adapt the fourth objective in the multi-objective
function; iv) to adapt constraints (7’.a) to (11’.b) to in-
volve ∆LBEi∗ and ∆UBEi∗ as well as ∆LBTj, ∆UBTj
and ∆DTj only for the selected tasks of T ∗; v) replace
the “reasonable bounds” in constraints (13.a) to (13.c)
with arbitrarily chosen bounds; etc.

Thus, we can let the end-user - who is actually
the person who knows the best the application con-
text of the WSRP solved - choose the locations and
the bounds of the potential alterations to apply on the
data of I and still be able to define a Model 2 adapted
to such choices.

To conclude, this Subsection 3.2 was devoted to
describe how we move from the end-user’s question
q to an ILP model, namely Model 2. In the follow-
ing subsection, we present how we exploit an optimal
solution of Model 2 to produce a counterfactual ex-
planation.

3.3 From ILP modeling to explanations

As a continuation of Subsection 3.2, in this sub-
section, we keep focusing on a question q that relates
to a solution S of a WSRP instance I that is expressed
thanks to (Q5) template text. In addition, we assume
that we obtained an optimal solution of Model 2 that
is associated with q. Such a solution can be obtained
using any ILP solver on the Model 2. Note that solv-
ing Model 2 requires a reasonable computational ef-
fort thanks to the drastic reduction in the model size
that we obtained by restricting the model to the route
and schedule of i∗ (c.f. Subsection 3.2.2).



As mentioned in Subsection 3.2.2, due to the re-
duction of the set of decision variables in Model 2 to
the Ui jk such that i = i∗ and the Tj such that j ∈ T ∗,
a Model 2 solution is not directly a solution of Model
1 i.e. a solution of I . However, given S and a Model
2 solution, we can build a new Model 1 solution as
follows. Let us note S2 a solution of Model 2. By re-
placing in S the values of the decision variables which
are common to Model 1 and Model 2 with the values
that these variables take in S2, we can build a new so-
lution S ′ of the Model 1.

In particular, when S2 is an optimal solution of
Model 2, we call the solution S ′ a neighboring solu-
tion of S induced by Model 2. Note that in most cases
S ′ is likely to be infeasible relatively to I as S2 is
likely to have positive altering variables correspond-
ing to necessary alterations of I .

Similarly, we can define a notion of neighboring
instance of I induced by Model 2. Indeed, Model 2
contains not only decision variables which are shared
with Model 1 but also its own decision variables like
the altering ones. By changing the data of I according
to the values taken by these altering variables S2, we
can build a new WSRP instance I ′. Again, when S2 is
an optimal solution of Model 2, we call such instance
I ′ a neighboring instance of I induced by Model 2.
Note that in most cases I ′ ̸= I .

From now on, in addition to q, S and I already
introduced, let us consider S2 an optimal solution of
Model 2 that is related to q, S ′ a neighboring solu-
tion of S induced by Model 2 and I ′ a neighboring
instance of I induced by Model 2.

We identify three possible cases based on the val-
ues taken by decision variables in the optimal solution
S2 of Model 2.
Case 1: T lb

j∗ −T ub
j∗ = 0 and ∆Tmax > 0.

Case 2: T lb
j∗ −T ub

j∗ = 0 and ∆Tmax = 0.
Case 3: T lb

j∗ −T ub
j∗ > 0.

Case 1 corresponds to the case where by resort-
ing to some alterations of the data of I , it is possible
to obtain the end-user’s desideratum (i.e. it is possible
to make employee i∗ perform the task j∗ in addition to
their already-perform tasks, knowing that q is a ques-
tion based on (Q5) template text). In other words,
the neighboring solution S ′ is feasible relatively to the
neighboring instance I ′ and I ′ ̸= I .

The counterfactual explanation for Case 1 can be
expressed as follows: “By ⟨applying the instance al-
terations associated with all the non-zero altering
variables causing I ̸= I ′⟩, ⟨the desideratum⟩ would
be possible; in this case, the solution would be
⟨description of S ′⟩”

Case 1 is actually the case encountered for an-
swering qex, our illustrative example question intro-
duced in Section 1. Indeed, the counterfactual expla-
nation is “By changing the opening time of task 17,
from its value 12:30PM in the current input data, to
12:29PM instead, making Ellen perform the task 15
in addition to her already-performed tasks would be
possible; in this case, the solution would be the one
obtained by changing Ellen’s sequence of performed
tasks to [30, 7, 8, 1, 17, 15, 26, 3].”

Case 2 corresponds to the case where it is possible
to obtain the end-user’s desideratum without even re-
sorting to any alterations of the data of I . In other
words, the neighboring solution S ′ is feasible rela-
tively to the original instance I (and I ′ = I ).

In practice, knowing that q is a question based on
(Q5) template text, such case is actually expected not
to occurred so often. Indeed, as q asks for adding a
non-performed task j∗ to the already-performed tasks
of an employee i∗, if the transformed solution is fea-
sible then it would necessarily be better than S . How-
ever, if S has been obtained thanks to an optimization
system applied on I, S should be a good solution, pos-
sibly even an optimal one, which can not be improved
by local transformations. Therefore, transforming S
to satisfy the end-user’s desideratum should certainly
result in an infeasible solution.

The counterfactual explanation for Case 2 can be
expressed as follows: “Without altering any data of
the current instance, ⟨the desideratum⟩ is possible;
the solution is ⟨description of S ′⟩.”

Case 3 corresponds to the case where it is not pos-
sible to obtain the end-user’s desideratum despite the
possibility of altering the date of I .

Facing this situation, we could have provided a
simple explanation text telling that it is not possible
to obtain the desideratum despite all the possible al-
terations of the data of I . However, thanks to the
decision variables T lb

j∗ and T ub
j∗ , which guarantee the

feasibility of Model 2 (c.f. Subsection 3.2), even if
the insertion of j∗ in the route of i∗ is not possible
despite the alterations of I , we can still build a neigh-
boring solution S ′ and a neighboring instance I ′. In
such case, S ′ is admittedly infeasible relatively to I ′

but S ′ can be interpreted as the solution satisfying the
desideratum that is the closest to be feasible relatively
to I . We can then use this information to enrich the
explanation text provided to the end-user.

The counterfactual explanation for Case 3 can be
expressed as follows: “Despite all the possible alter-
ations of the current instance data, ⟨the desideratum⟩
is not possible. The best that could be done con-
sists in ⟨applying the instance alterations associated
with all the non-zero altering variables causing I ̸=



I ′⟩; in this case, the best solution satisfying ⟨the
desideratum⟩ is the solution ⟨description of S ′⟩ which
is not valid though.”

To conclude, in this Subsection 3.3, we presented
how the result of Model 2 can be used to build
a counterfactual explanation answering to the end-
user’s question q by identifying three cases and adapt-
ing the explanation text in consequences.

4 CONCLUSION

In this paper, we proposed a new approach, based
on mathematical programming, to compute counter-
factual explanations for an end-user of an optimiza-
tion system solving the Workforce Scheduling and
Routing Problem (WSRP), that we modeled as a bi-
objective Integer Linear Programming (ILP) model.

We considered that, facing a solution S of a WSRP
instance I that was provided by an optimization sys-
tem, the end-user requests explanations by expressing
questions which satisfy certain assumptions. Among
others, these questions must be about S and focus on
an end-user’s recourse about it. We provided a non-
exhaustive list of template texts for formulating such
questions.

Given an end-user’s question q, we associated
q with a multi-objective ILP model. This model
involves altering variables which enable precise
changes in the instance I data. The purpose of this
ILP model is to look for the changes to operate on
I for obtaining a new solution S ′ satisfying the end-
user’s desideratum.

In terms of future works, there are various re-
search topics that we would like to explore. Among
others, one of them is to evaluate our approach in
terms of benefits brought by our explanations to the
end-user. A second is to transpose our approach to
other Combinatorial Optimization problems than the
WSRP to investigate its genericity.

ACKNOWLEDGEMENTS

This work has been supported by the project PSPC
AIDA: 2019- PSPC-09 funded by BPI-France. We
thank Daniel Godard, Filippo Focacci and Desirée
Rigonat from DecisionBrain for their time and their
helpful feedback throughout this work.

REFERENCES

Barredo Arrieta, A., Dı́az-Rodrı́guez, N., Del Ser, J., Ben-
netot, A., Tabik, S., Barbado, A., Garcia, S., Gil-
Lopez, S., Molina, D., Benjamins, R., Chatila, R.,
and Herrera, F. (2020). Explainable Artificial Intel-
ligence (XAI): Concepts, taxonomies, opportunities
and challenges toward responsible AI. Information fu-
sion, 58:82–115.

Castillo-Salazar, J. A., Landa-Silva, D., and Qu, R. (2016).
Workforce Scheduling and Routing Problems: litera-
ture survey and computational study. Annals of Oper-
ations Research, 239:39 – 67.

Chen, X., Thomas, B. W., and Hewitt, M. (2016). The
Technician Routing Problem with experience-based
service times. Omega, 61:49–61.

Čyras, K., Letsios, D., Misener, R., and Toni, F. (2019). Ar-
gumentation for Explainable Scheduling. In Proceed-
ings of the thirty-third Association for the Advance-
ment of Artificial Intelligence Conference on Artificial
Intelligence, pages 2752 – 2759. AAAI Press.

DecisionBrain (2022). Decisionbrain s.a.s. https://decision
brain.com/. Accessed 2022-10-10.

Euchi, J., Masmoudi, M., and Siarry, P. (2022). Home
health care routing and scheduling problems: a litera-
ture review. 4OR, pages 1–39.

GDPR (2016). Regulation (EU) 2016/679 of the European
Parliament and of the Council of 27 April 2016 on the
protection of natural persons with regard to the pro-
cessing of personal data and on the free movement of
such data, and repealing Directive 95/46/EC (General
Data Protection Regulation).

Gunning, D. and Aha, D. (2019). DARPA’s Explainable
Artificial Intelligence (XAI) program. AI Magazine,
40:44–58.

Korikov, A., Shleyfman, A., and Beck, C. (2021). Counter-
factual explanations for optimization-based decisions
in the context of the GDPR. In Proceedings of the
thirtieth International Joint Conference on Artificial
Intelligence, pages 4097 – 4103. IJCAI Organization.

Lerouge, M., Gicquel, C., Mousseau, V., and Ouerdane,
W. (2022). Explaining solutions stemming from op-
timization systems solving the Workforce Scheduling
and Routing Problem to their end-users. Working pa-
per https://hal.archives-ouvertes.fr/hal-03795653.

Lipton, P. (1990). Contrastive explanation. Royal Institute
of Philosophy Supplement, 27:247–266.

Ludwig, J., Kalton, A., and Stottler, R. (2018). Explain-
ing complex scheduling decisions. In Intelligent User
Interfaces Workshops.

Wachter, S., Mittelstadt, B., and Russell, C. (2018). Coun-
terfactual explanations without opening the black box:
Automated decisions and the GDPR. Harvard Journal
of Law & Technology, 31.



APPENDIX

Appendix A. Instance

Employee Name Skill level Location Time-window
i skei [lbei, ubei]

in E in N⋆ as (lat., long.) in deg. as time range as integer range

1 Ellen 2 (47.773, 16.193) [8:00AM, 6:00PM] [480, 1080]
2 Alex 3 (47.598, 15.785) [9:00AM, 6:00PM] [540, 1080]
3 Adam 2 (48.188, 14.862) [8:00AM, 6:00PM] [480, 1080]
4 Fabian 1 (48.069, 14.485) [8:00AM, 6:00PM] [480, 1080]
5 Carlotta 1 (47.463, 15.351) [8:00AM, 6:00PM] [480, 1080]

Task Skill level Location Duration Time-window
j skt j dt j [lbt j, ubt j]

in T in N⋆ as (lat., long.) in deg. in min. as time range as integer range

1 1 (48.129, 15.754) 40 [8:00AM, 6:00PM] [480, 1080]
2 1 (47.240, 15.430) 40 [2:00PM, 6:00PM] [840, 1080]
3 1 (47.803, 15.348) 40 [11:00AM, 6:00PM] [660, 1080]
4 1 (47.913, 15.539) 30 [2:00PM, 6:00PM] [840, 1080]
5 1 (47.240, 14.639) 40 [8:00AM, 12:00PM] [480, 720]
6 3 (47.719, 15.856) 40 [8:00AM, 6:00PM] [480, 1080]
7 2 (47.691, 15.979) 30 [8:45AM, 12:00PM] [525, 720]
8 1 (47.904, 15.988) 40 [8:00AM, 6:00PM] [480, 1080]
9 1 (48.252, 15.159) 40 [9:00AM, 12:00PM] [540, 720]

10 2 (48.233, 15.094) 80 [9:00AM, 6:00PM] [540, 1080]
11 2 (47.879, 14.348) 40 [8:00AM, 6:00PM] [480, 1080]
12 2 (47.151, 15.559) 40 [8:00AM, 6:00PM] [480, 1080]
13 1 (48.073, 14.500) 30 [8:00AM, 6:00PM] [480, 1080]
14 1 (47.509, 15.979) 50 [8:00AM, 6:00PM] [480, 1080]
15 2 (48.182, 15.480) 25 [8:00AM, 2:00PM] [480, 840]
16 1 (47.307, 16.030) 30 [8:00AM, 6:00PM] [480, 1080]
17 1 (48.174, 15.768) 40 [12:30PM, 4:00PM] [750, 960]
18 1 (47.696, 14.639) 40 [8:00AM, 6:00PM] [480, 1080]
19 2 (47.466, 15.662) 40 [8:00AM, 6:00PM] [480, 1080]
20 2 (47.624, 15.928) 30 [8:00AM, 6:00PM] [480, 1080]
21 1 (47.893, 15.139) 45 [8:00AM, 6:00PM] [480, 1080]
22 1 (47.799, 15.814) 30 [3:00PM, 6:00PM] [900, 1080]
23 1 (47.430, 15.794) 30 [10:00AM, 3:00PM] [600, 900]
24 2 (48.178, 15.144) 40 [2:00PM, 3:00PM] [840, 900]
25 1 (47.382, 16.094) 40 [8:00AM, 1:00PM] [480, 780]
26 2 (47.809, 15.206) 40 [12:00PM, 6:00PM] [720, 1080]
27 2 (47.948, 15.950) 50 [8:00AM, 3:00PM] [480, 900]
28 3 (47.160, 15.991) 30 [8:00AM, 6:00PM] [480, 1080]
29 1 (47.829, 15.253) 40 [8:00AM, 1:00PM] [480, 780]
30 1 (47.646, 15.907) 40 [8:00AM, 12:00PM] [480, 720]
31 2 (47.399, 15.535) 40 [8:00AM, 4:00PM] [480, 960]

Table 2: An example of WSRP instance. The first table describes the data about the set of employees E . Each employee
i ∈ E is characterized by a skill level skei, a departure and return location, and a time-window [lbei, ubei]. The second table
describes the data about the tasks. Each task j is described by a skill level skt j , a location, a duration dt j and a time-window
[lbt j, ubt j]. It is assumed that all the employees have the same traveling speed of 50km/h. Considering that the earth radius
is 6731km, the traveling time, in minutes, between two locations (lat1, long1) and (lat2, long2) can be computed as follows:
6731× arccos(sin(lat1)× sin(lat2)+ cos(lat1)× cos(lat2)× cos(long2 − long1))/50×60. (Lerouge et al., 2022)



Appendix B. Solution

Employee Binary decision variables
i Ui, j,k

1
U1,d1,7 =U1,7,30 =U1,30,3 =U1,3,26 =U1,26,1

=U1,1,17 =U1,17,8 =U1,8,r1 = 1
U1, j,k = 0 for all other couples of activities ( j,k)

2
U2,d2,28 =U2,28,16 =U2,16,25 =U2,25,14 =U2,14,20

=U2,20,6 =U2,6,19 =U2,19,r2 = 1
U2, j,k = 0 for all other couples of activities ( j,k)

3 U3,d3,11 =U3,11,9 =U3,9,10 =U3,10,24 =U3,24,r3 = 1
U3, j,k = 0 for all other couples of activities ( j,k)

4
U4,d4,13 =U4,13,18 =U4,18,21 =U4,21,29 =U4,29,14

=U4,14,22 =U4,22,r4 = 1
U4, j,k = 0 for all other couples of activities ( j,k)

5 U5,d5,5 =U5,5,23 =U5,23,2 =U5,2,r5 = 1
U5, j,k = 0 for all other couples of activities ( j,k)

Task Integer decision variables
j Tj

1 840
2 1009
3 662
4 866
5 600
6 933
7 525
8 1009
9 670

10 717
11 542
12 0
13 482
14 822
15 0
16 653

Task Integer decision variables
j Tj

17 900
18 564
19 1019
20 888
21 656
22 925
23 840
24 840
25 702
26 720
27 0
28 600
29 738
30 567
31 0

blank

Table 3: An example of solution of the WSRP instance described in Table 2. This solution also represented in Figure 1. The
first table gives the values of the binary decision variables Ui jk and the second table gives the values of the integer decision
variables Tj. (Lerouge et al., 2022)


