

Counterfactual explanations for Workforce Scheduling and Routing Problems

Mathieu Lerouge

mathieulerouge.github.io

MICS, CentraleSupélec Université Paris-Saclay

ICORES

19 February 2023

- 1 Introduction
- 2 Related works
- 3 Mathematical model of the WSRP
- 4 Generating counterfactual explanations
- 5 Conclusion

Plan

- 1 Introduction
- 2 Related works
- 3 Mathematical model of the WSRP
- 4 Generating counterfactual explanations
- 5 Conclusion

Plan

1 Introduction

- Motivations
- Use case
- Our proposition

2 Related works

3 Mathematical model of the WSRP

4 Generating counterfactual explanations

5 Conclusion

3 observations:

- (1) Real-world situations modeled as **Combinatorial Optimization (CO) problems** (e.g. workforce management);
- (2) CO problems solved using **optimization systems** that are developed by experts (e.g. DecisionBrain);
- (3) Optimization systems are used by **non-expert people**.
→ End-users may experience a **black box feeling**.

Let see (1), (2) and (3) in our use case.

3 observations:

- (1) Real-world situations modeled as **Combinatorial Optimization (CO) problems** (e.g. workforce management);
- (2) CO problems solved using **optimization systems** that are developed by experts (e.g. DecisionBrain);
- (3) Optimization systems are used by **non-expert people**.
→ End-users may experience a **black box feeling**.

Let see (1), (2) and (3) in our use case.

3 observations:

- (1) Real-world situations modeled as **Combinatorial Optimization (CO) problems** (e.g. workforce management);
- (2) CO problems solved using **optimization systems** that are developed by experts (e.g. DecisionBrain);
- (3) Optimization systems are used by **non-expert people**.
→ End-users may experience a **black box feeling**.

Let see (1), (2) and (3) in our use case.

3 observations:

- (1) Real-world situations modeled as **Combinatorial Optimization (CO) problems** (e.g. workforce management);
- (2) CO problems solved using **optimization systems** that are developed by experts (e.g. DecisionBrain);
- (3) Optimization systems are used by **non-expert people**.
→ End-users may experience a **black box feeling**.

Let see (1), (2) and (3) in our use case.

3 observations:

- (1) Real-world situations modeled as **Combinatorial Optimization (CO) problems** (e.g. workforce management);
- (2) CO problems solved using **optimization systems** that are developed by experts (e.g. DecisionBrain);
- (3) Optimization systems are used by **non-expert people**.
→ End-users may experience a **black box feeling**.

Let see (1), (2) and (3) in our use case.

3 observations:

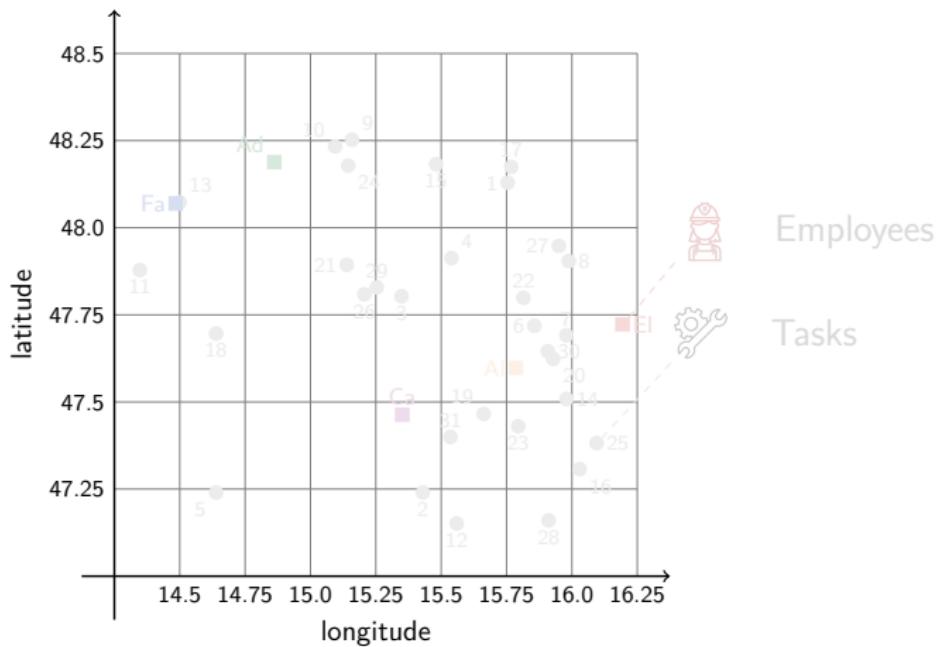
- (1) Real-world situations modeled as **Combinatorial Optimization (CO) problems** (e.g. workforce management);
- (2) CO problems solved using **optimization systems** that are developed by experts (e.g. DecisionBrain);
- (3) Optimization systems are used by **non-expert people**.
→ End-users may experience a **black box feeling**.

Let see (1), (2) and (3) in our use case.

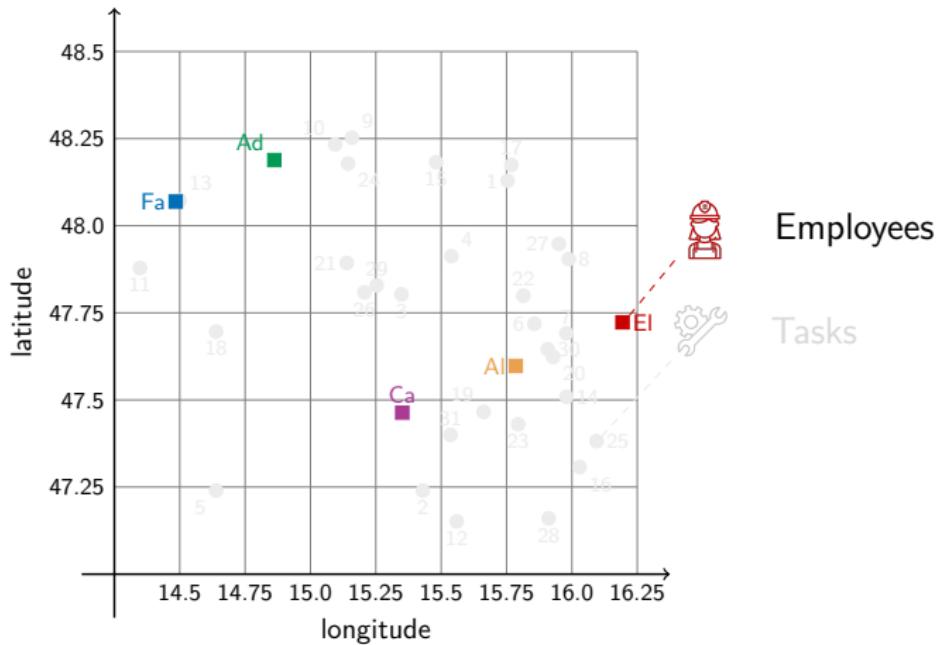
Plan

1 Introduction

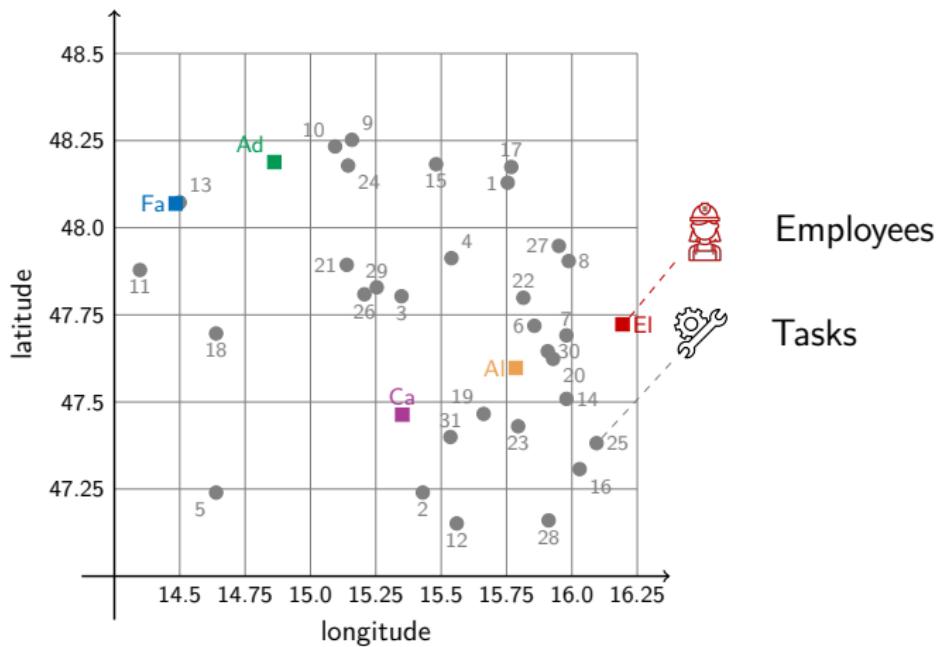
- Motivations
- Use case
- Our proposition


2 Related works

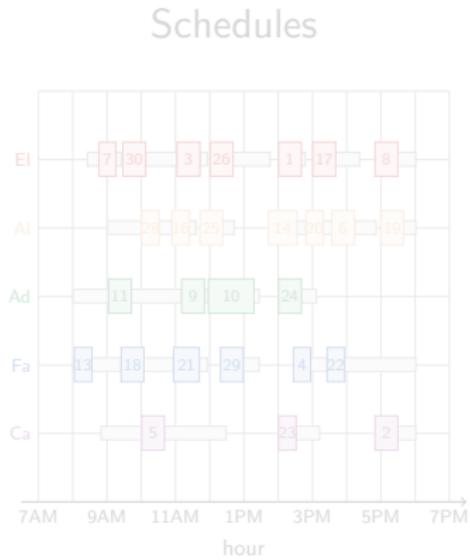
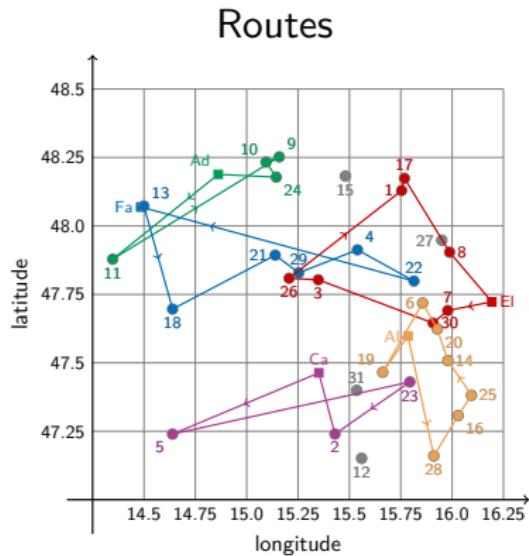
3 Mathematical model of the WSRP


4 Generating counterfactual explanations

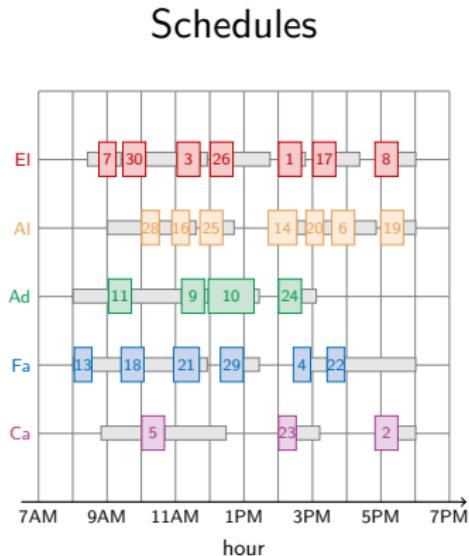
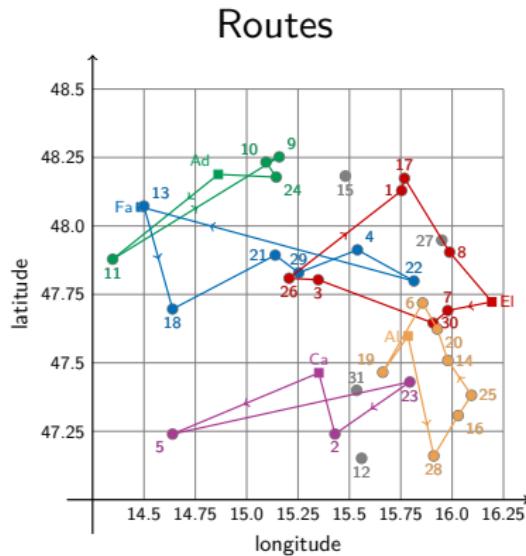
5 Conclusion


Workforce Scheduling and Routing Problem (WSRP):

Workforce Scheduling and Routing Problem (WSRP):

Workforce Scheduling and Routing Problem (WSRP):

Use case - (1) CO problem

Workforce Scheduling and Routing Problem (WSRP):

Workforce Scheduling and Routing Problem (WSRP):

Our use case - (2) Optimization system

WSRP-solving system:

e.g DecisionBrain's Dynamic Scheduler

DecisionBrain DASHBOARD JOBS ASSIGN JOB ENGIN > 01-04-2019 1 / 101 9 h 4.04 47.84 mi 72 Daniel Godard

J100402 - HULL SPRING BANK AP0914 Air Conditioning RM W100403 105 min

0 modified planned jobs 0 unassigned planned jobs SAVE CLOSE

Search Engineers Only compatible engineers

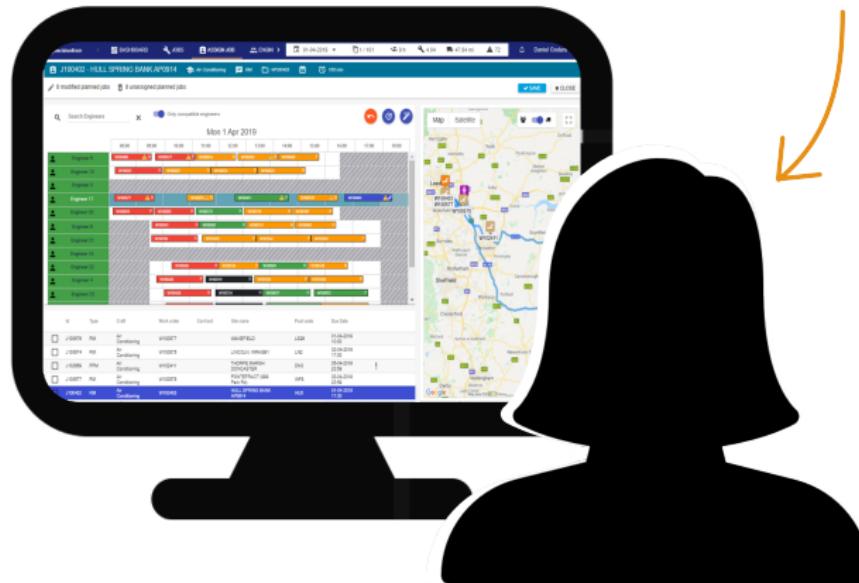
Mon 1 Apr 2019

	08:00	09:00	10:00	11:00	12:00	13:00	14:00	15:00	16:00	17:00	18:00
Engineer 5	W100403	W100577	W100574	W100575	W100576	W100578	W100579	W100580			
Engineer 13		W100578	W100579	W100580	W100581						
Engineer 3											
Engineer 17	W100577	W100578	W100579	W100581	W100581	W100582	W100583	W100584			
Engineer 20	W100585	W100586	W100587	W100588	W100589	W100590	W100591	W100592			
Engineer 8	W100594	W100595	W100596	W100597	W100598	W100599	W100600	W100601			
Engineer 21	W100602	W100603	W100604	W100605	W100606	W100607	W100608	W100609			
Engineer 16											
Engineer 22	W100630	W100631	W100632	W100633	W100634	W100635	W100636	W100637			
Engineer 4	W100640	W100641	W100642	W100643	W100644	W100645	W100646	W100647			
Engineer 23	W100648	W100649	W100650	W100651	W100652	W100653	W100654	W100655			

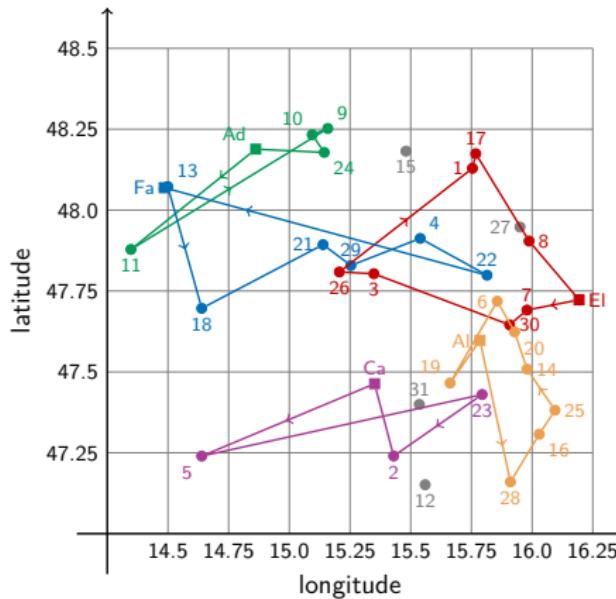
Jobs

ID	Type	Craft	Work order	Contract	Site name	Post code	Due Date
J100576	RM	Air Conditioning	W100577		WAKEFIELD	LS26	01-04-2019 10:00
J100574	RM	Air Conditioning	W100575		LINCOLN WRAGBY	LN2	02-04-2019 17:30
J102689	PPM	Air Conditioning	W102411		THORPE MARSH DONCASTER	DN3	05-04-2019 23:59
J100577	RM	Air Conditioning	W100578	PONTEFRACT (999 Park Rd)	WFB	03-04-2019 23:59	
J100402	RM	Air Conditioning	W100403	HULL SPRING BANK AP0914	HUS	01-04-2019 17:30	

Map Satellite

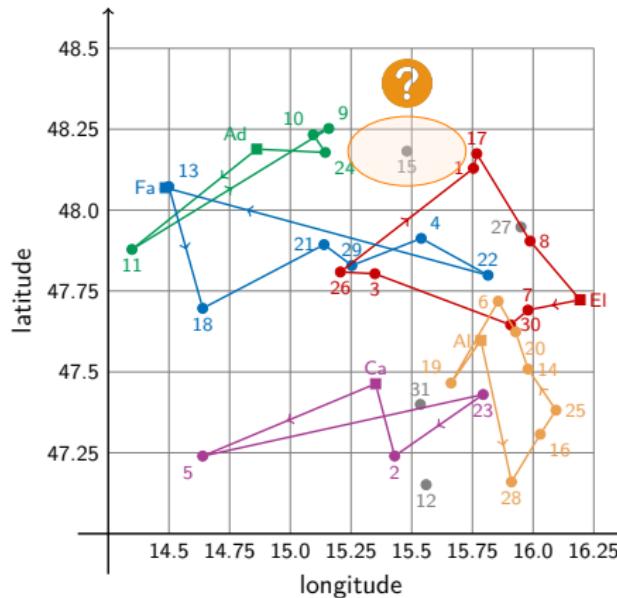


Leeds W100403 W100577 Wakefield W100578 W102411 Scunthorpe W100575 North Hykeham W100675


Map Data ©2019 Google Terms of Use Report a map error

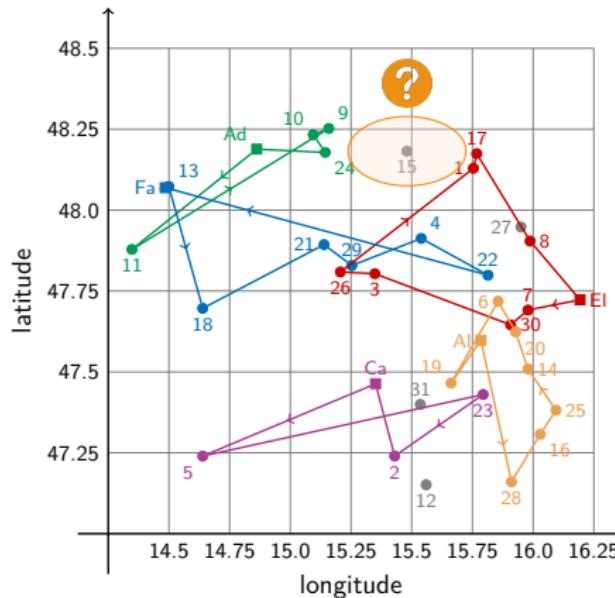
Use case - (3) Non-expert end-user

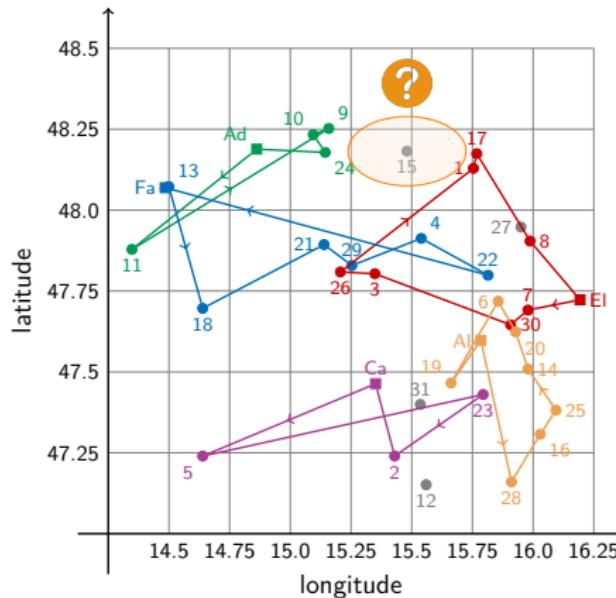
Planner:



A problematic situation for a planner:

“How to make Ellen perform task 15 in addition to the tasks of her route?”


A problematic situation for a planner:


“How to make Ellen perform task 15 in addition to the tasks of her route?”

→ If no explanations, then black box feeling...

A problematic situation for a planner:

A problematic situation for a planner:

“How to make Ellen perform task 15 in addition to the tasks of her route?”

- If no explanations, then black box feeling...

Plan

1 Introduction

- Motivations
- Use case
- Our proposition

2 Related works

3 Mathematical model of the WSRP

4 Generating counterfactual explanations

5 Conclusion

Tackling the black box feeling experienced by non-expert end-users solving WSRP instances, by generating explanations to help them better understand their WSRP solutions.

Tackling the black box feeling experienced by non-expert end-users solving WSRP instances, by generating **explanations** to help them better understand their WSRP solutions.

Tackling the black box feeling experienced by non-expert end-users solving WSRP instances, by generating **explanations** to help them better understand their WSRP solutions.

Plan

- 1 Introduction
- 2 Related works
- 3 Mathematical model of the WSRP
- 4 Generating counterfactual explanations
- 5 Conclusion

Plan

1 Introduction

2 Related works

- Explanations in Artificial Intelligence
- Our proposition (with more details)

3 Mathematical model of the WSRP

4 Generating counterfactual explanations

5 Conclusion

Literature on eXplainable Artificial Intelligence (XAI):

Works on explanations:

- Many in Machine Learning [Barredo Arrieta et al., 2020].
- Some in other AI fields including
 - Expert Systems, [Wick and Thompson, 1992],
 - Planning, e.g. [Chakraborti et al., 2020],
 - Constraint Programming, e.g. [Junker, 2004].
- Few ones in Combinatorial Optimization (CO),
e.g. [Korikov et al., 2021].
 - Survey concepts about explanations in AI fields other than CO and transpose them to CO.

[Barredo Arrieta et al., 2020] XAI: Concepts, taxonomies, opportunities and challenges toward responsible AI

[Wick and Thompson, 1992] Reconstructive Expert System explanation

[Chakraborti et al., 2020] The emerging landscape of explainable AI planning and decision making

[Junker, 2004] QuickXplain: preferred explanations and relaxations for over-constrained problems

[Korikov et al., 2021] Counterfactual Explanations for Optimization-Based Decisions in the Context of the GDPR

Literature on eXplainable Artificial Intelligence (XAI):

Works on explanations:

- **Many in Machine Learning** [Barredo Arrieta et al., 2020].
- **Some in other AI fields** including
 - Expert Systems, [Wick and Thompson, 1992],
 - Planning, e.g. [Chakraborti et al., 2020],
 - Constraint Programming, e.g. [Junker, 2004].
- **Few ones in Combinatorial Optimization (CO)**,
e.g. [Korikov et al., 2021].
 - Survey concepts about explanations in AI fields other than CO and transpose them to CO.

[Barredo Arrieta et al., 2020] XAI: Concepts, taxonomies, opportunities and challenges toward responsible AI

[Wick and Thompson, 1992] Reconstructive Expert System explanation

[Chakraborti et al., 2020] The emerging landscape of explainable AI planning and decision making

[Junker, 2004] QuickXplain: preferred explanations and relaxations for over-constrained problems

[Korikov et al., 2021] Counterfactual Explanations for Optimization-Based Decisions in the Context of the GDPR

Literature on eXplainable Artificial Intelligence (XAI):

Works on explanations:

- **Many in Machine Learning** [Barredo Arrieta et al., 2020].
- **Some in other AI fields** including
 - Expert Systems, [Wick and Thompson, 1992],
 - Planning, e.g. [Chakraborti et al., 2020],
 - Constraint Programming, e.g. [Junker, 2004].
- **Few ones in Combinatorial Optimization (CO)**,
e.g. [Korikov et al., 2021].
 - Survey concepts about explanations in AI fields other than CO and transpose them to CO.

[Barredo Arrieta et al., 2020] XAI: Concepts, taxonomies, opportunities and challenges toward responsible AI

[Wick and Thompson, 1992] Reconstructive Expert System explanation

[Chakraborti et al., 2020] The emerging landscape of explainable AI planning and decision making

[Junker, 2004] QuickXplain: preferred explanations and relaxations for over-constrained problems

[Korikov et al., 2021] Counterfactual Explanations for Optimization-Based Decisions in the Context of the GDPR

Literature on eXplainable Artificial Intelligence (XAI):

Works on explanations:

- **Many in Machine Learning** [Barredo Arrieta et al., 2020].
- **Some in other AI fields** including
 - Expert Systems, [Wick and Thompson, 1992],
 - Planning, e.g. [Chakraborti et al., 2020],
 - Constraint Programming, e.g. [Junker, 2004].
- **Few ones in Combinatorial Optimization (CO)**,
e.g. [Korikov et al., 2021].
 - Survey concepts about explanations in AI fields other than CO and transpose them to CO.

[Barredo Arrieta et al., 2020] XAI: Concepts, taxonomies, opportunities and challenges toward responsible AI

[Wick and Thompson, 1992] Reconstructive Expert System explanation

[Chakraborti et al., 2020] The emerging landscape of explainable AI planning and decision making

[Junker, 2004] QuickXplain: preferred explanations and relaxations for over-constrained problems

[Korikov et al., 2021] Counterfactual Explanations for Optimization-Based Decisions in the Context of the GDPR

Literature on eXplainable Artificial Intelligence (XAI):

Works on explanations:

- **Many in Machine Learning** [Barredo Arrieta et al., 2020].
- **Some in other AI fields** including
 - Expert Systems, [Wick and Thompson, 1992],
 - Planning, e.g. [Chakraborti et al., 2020],
 - Constraint Programming, e.g. [Junker, 2004].
- **Few ones in Combinatorial Optimization (CO)**,
e.g. [Korikov et al., 2021].
 - Survey **concepts about explanations** in AI fields other than CO and transpose them to CO.

[Barredo Arrieta et al., 2020] XAI: Concepts, taxonomies, opportunities and challenges toward responsible AI

[Wick and Thompson, 1992] Reconstructive Expert System explanation

[Chakraborti et al., 2020] The emerging landscape of explainable AI planning and decision making

[Junker, 2004] QuickXplain: preferred explanations and relaxations for over-constrained problems

[Korikov et al., 2021] Counterfactual Explanations for Optimization-Based Decisions in the Context of the GDPR

Some recurrent concepts in XAI methods:

Explanations are often:

- **local** [Wick and Thompson, 1992], *i.e.* focusing on a specific output generated by the system.
- **counterfactual** [Wachter et al., 2018], *i.e.* explanations which present alterations in the inputs that would have resulted in different outputs (e.g. end-user-specified one).
- formulated as texts using **templates**, *e.g.* [Krarup et al., 2021].

[Wick and Thompson, 1992] Reconstructive expert system explanation

[Wachter et al., 2018] Counterfactual explanations w/o opening the black box: automated decisions and the GDPR

[Krarup et al., 2021] Contrastive explanations of plans through model restrictions

Some recurrent concepts in XAI methods:

Explanations are often:

- **local** [Wick and Thompson, 1992], *i.e.* focusing on a specific output generated by the system.
- **counterfactual** [Wachter et al., 2018], *i.e.* explanations which present alterations in the inputs that would have resulted in different outputs (e.g. end-user-specified one).
- formulated as texts using **templates**, *e.g.* [Krarup et al., 2021].

[Wick and Thompson, 1992] Reconstructive expert system explanation

[Wachter et al., 2018] Counterfactual explanations w/o opening the black box: automated decisions and the GDPR

[Krarup et al., 2021] Contrastive explanations of plans through model restrictions

Some recurrent concepts in XAI methods:

Explanations are often:

- **local** [Wick and Thompson, 1992], *i.e.* focusing on a specific output generated by the system.
- **counterfactual** [Wachter et al., 2018], *i.e.* explanations which present alterations in the inputs that would have resulted in different outputs (*e.g.* end-user-specified one).
- formulated as texts using **templates**, *e.g.* [Krarup et al., 2021].

[Wick and Thompson, 1992] Reconstructive expert system explanation

[Wachter et al., 2018] Counterfactual explanations w/o opening the black box: automated decisions and the GDPR

[Krarup et al., 2021] Contrastive explanations of plans through model restrictions

Some recurrent concepts in XAI methods:

Explanations are often:

- **local** [Wick and Thompson, 1992], *i.e.* focusing on a specific output generated by the system.
- **counterfactual** [Wachter et al., 2018], *i.e.* explanations which present alterations in the inputs that would have resulted in different outputs (e.g. end-user-specified one).
- formulated as texts using **templates**, *e.g.* [Krarup et al., 2021].

[Wick and Thompson, 1992] Reconstructive expert system explanation

[Wachter et al., 2018] Counterfactual explanations w/o opening the black box: automated decisions and the GDPR

[Krarup et al., 2021] Contrastive explanations of plans through model restrictions

Plan

1 Introduction

2 Related works

- Explanations in Artificial Intelligence
- Our proposition (with more details)

3 Mathematical model of the WSRP

4 Generating counterfactual explanations

5 Conclusion

Tackling the black box feeling experienced by non-expert end-users solving WSRP instances, by generating **explanations** to help them better understand their WSRP solutions.

Generating **explanations** which are:

- focusing on a given solution,
- counterfactual,
- expressed as texts using templates.

Tackling the black box feeling experienced by non-expert end-users solving WSRP instances, by generating **explanations** to help them better understand their WSRP solutions.

Generating **explanations** which are:

- focusing on a given solution,
- counterfactual,
- expressed as texts using templates.

Tackling the black box feeling experienced by non-expert end-users solving WSRP instances, by generating **explanations** to help them better understand their WSRP solutions.

Generating **explanations** which are:

- focusing **on a given solution**,
- **counterfactual**,
- expressed as **texts** using **templates**.

Tackling the black box feeling experienced by non-expert end-users solving WSRP instances, by generating **explanations** to help them better understand their WSRP solutions.

Generating **explanations** which are:

- focusing **on a given solution**,
- **counterfactual**,
- expressed as **texts** using **templates**.

Tackling the black box feeling experienced by non-expert end-users solving WSRP instances, by generating **explanations** to help them better understand their WSRP solutions.

Generating **explanations** which are:

- focusing **on a given solution**,
- **counterfactual**,
- expressed as **texts** using **templates**.

Plan

- 1 Introduction
- 2 Related works
- 3 Mathematical model of the WSRP
- 4 Generating counterfactual explanations
- 5 Conclusion

Instance data:

- $\mathcal{E} = \{1, \dots, n\}$ set of **mobile employees**, each employee i characterized by:
 - a **skill level** $ske_i \in \mathbb{N}$;
 - a working **time-window** $[lbe_i, ube_i] \subset [0, 1440] \subset \mathbb{N}$;
 - a **location**.
- $\mathcal{T} = \{1, \dots, m\}$ set of **tasks**, each task j characterized by:
 - a minimum required **skill level** $skt_j \in \mathbb{N}$;
 - an availability **time-window** $[lbt_j, ubt_j] \subset [0, 1440] \subset \mathbb{N}$;
 - a performing **duration** $dt_j \in \mathbb{N}$;
 - a **location**.
- **Travel duration** between two locations tr_{jk} with $(j, k) \in \mathcal{T}^2$.

Instance data:

- $\mathcal{E} = \{1, \dots, n\}$ set of **mobile employees**, each employee i characterized by:
 - a **skill level** $ske_i \in \mathbb{N}$;
 - a working **time-window** $[lbe_i, ube_i] \subset [0, 1440] \subset \mathbb{N}$;
 - a **location**.
- $\mathcal{T} = \{1, \dots, m\}$ set of **tasks**, each task j characterized by:
 - a minimum required **skill level** $skt_j \in \mathbb{N}$;
 - an availability **time-window** $[lbt_j, ubt_j] \subset [0, 1440] \subset \mathbb{N}$;
 - a performing **duration** $dt_j \in \mathbb{N}$;
 - a **location**.
- **Travel duration** between two locations tr_{jk} with $(j, k) \in \mathcal{T}^2$.

Instance data:

- $\mathcal{E} = \{1, \dots, n\}$ set of **mobile employees**, each employee i characterized by:
 - a **skill level** $ske_i \in \mathbb{N}$;
 - a working **time-window** $[lbe_i, ube_i] \subset [0, 1440] \subset \mathbb{N}$;
 - a **location**.
- $\mathcal{T} = \{1, \dots, m\}$ set of **tasks**, each task j characterized by:
 - a minimum required **skill level** $skt_j \in \mathbb{N}$;
 - an availability **time-window** $[lbt_j, ubt_j] \subset [0, 1440] \subset \mathbb{N}$;
 - a performing **duration** $dt_j \in \mathbb{N}$;
 - a **location**.
- **Travel duration** between two locations tr_{jk} with $(j, k) \in \mathcal{T}^2$.

Instance data:

- $\mathcal{E} = \{1, \dots, n\}$ set of **mobile employees**, each employee i characterized by:
 - a **skill level** $ske_i \in \mathbb{N}$;
 - a working **time-window** $[lbe_i, ube_i] \subset [0, 1440] \subset \mathbb{N}$;
 - a **location**.
- $\mathcal{T} = \{1, \dots, m\}$ set of **tasks**, each task j characterized by:
 - a minimum required **skill level** $skt_j \in \mathbb{N}$;
 - an availability **time-window** $[lbt_j, ubt_j] \subset [0, 1440] \subset \mathbb{N}$;
 - a performing **duration** $dt_j \in \mathbb{N}$;
 - a **location**.
- **Travel duration** between two locations tr_{jk} with $(j, k) \in \mathcal{T}^2$.

Bi-objective Integer Linear Program (ILP) model:

lex max (total working duration, $-\text{total traveling duration}$)

s.t. - flow constraints
- skill constraints
- occurrence constraints
- tasks availability constraints
- employees working hours constraints
- sequencing constraints

$U_{ijk} \in \{0,1\}$ whether or not i goes from j to k , $\forall i \in \mathcal{E}, \forall (j,k) \in \mathcal{T}^2$
 $T_j \in \mathbb{N}$ start time of j , $\forall j \in \mathcal{T}$

Bi-objective Integer Linear Program (ILP) model:

lex max (total working duration, -total traveling duration)

s.t. - flow constraints
- skill constraints
- occurrence constraints
- tasks availability constraints
- employees working hours constraints
- sequencing constraints

$U_{ijk} \in \{0,1\}$ whether or not i goes from j to k , $\forall i \in \mathcal{E}$, $\forall (j,k) \in \mathcal{T}^2$
 $T_j \in \mathbb{N}$ start time of j , $\forall j \in \mathcal{T}$

Bi-objective Integer Linear Program (ILP) model:

lex max (total working duration, $-\text{total traveling duration}$)

s.t. - flow constraints
 - skill constraints
 - occurrence constraints
 - tasks availability constraints
 - employees working hours constraints
 - sequencing constraints

$U_{ijk} \in \{0, 1\}$ whether or not i goes from j to k , $\forall i \in \mathcal{E}$, $\forall (j, k) \in \mathcal{T}^2$
 $T_j \in \mathbb{N}$ start time of j , $\forall j \in \mathcal{T}$

Bi-objective Integer Linear Program (ILP) model:

lex max (total working duration, $-\text{total traveling duration}$)

s.t. - flow constraints
 - skill constraints
 - occurrence constraints
 - tasks availability constraints
 - employees working hours constraints
 - sequencing constraints

$U_{ijk} \in \{0, 1\}$ whether or not i goes from j to k , $\forall i \in \mathcal{E}$, $\forall (j, k) \in \mathcal{T}^2$
 $T_j \in \mathbb{N}$ start time of j , $\forall j \in \mathcal{T}$

Bi-objective Integer Linear Program (ILP) model:

lex max (total working duration, $-\text{total traveling duration}$)

s.t.

- flow constraints
- skill constraints
- occurrence constraints
- tasks availability constraints
- employees working hours constraints
- **sequencing constraints**

$U_{ijk} \in \{0, 1\}$ whether or not i goes from j to k , $\forall i \in \mathcal{E}$, $\forall (j, k) \in \mathcal{T}^2$
 $T_j \in \mathbb{N}$ start time of j , $\forall j \in \mathcal{T}$

Sequencing constraints:

$$\forall (j, k) \in \mathcal{T}^2, j \neq k,$$

$$T_j + \underbrace{dt_j}_{\text{duration of } j} + \sum_{i \in \mathcal{E}} U_{ijk} \underbrace{tr_{jk}}_{\substack{\text{travel duration} \\ j \rightarrow k}} \leq T_k + \left(1 - \sum_{i \in \mathcal{E}} U_{ijk}\right) \underbrace{ubt_j}_{\text{upper bound of } j}$$

↪ If there is an employee performing j then k ,

$$T_j + dt_j + 1 \times tr_{jk} \leq T_k + 0 \times ubt_j$$

↪ Otherwise,

$$T_j + dt_j + 0 \times tr_{jk} \leq T_k + 1 \times ubt_j$$

Sequencing constraints:

$$\forall (j, k) \in \mathcal{T}^2, j \neq k,$$

$$T_j + \underbrace{dt_j}_{\text{duration of } j} + \underbrace{\sum_{i \in \mathcal{E}} U_{ijk}}_{tr_{jk}} \leq T_k + \left(1 - \sum_{i \in \mathcal{E}} U_{ijk}\right) \underbrace{ubt_j}_{\text{upper bound of } j}$$

↪ If there is an employee performing j then k ,

$$T_j + dt_j + 1 \times tr_{jk} \leq T_k + 0 \times ubt_j$$

↪ Otherwise,

$$T_j + dt_j + 0 \times tr_{jk} \leq T_k + 1 \times ubt_j$$

Sequencing constraints:

$$\forall (j, k) \in \mathcal{T}^2, j \neq k,$$

$$T_j + \underbrace{dt_j}_{\text{duration of } j} + \underbrace{\sum_{i \in \mathcal{E}} U_{ijk}}_{tr_{jk}} \leq T_k + \left(1 - \sum_{i \in \mathcal{E}} U_{ijk}\right) \underbrace{ubt_j}_{\text{upper bound of } j}$$

↪ If there is an employee performing j then k ,

$$T_j + dt_j + 1 \times tr_{jk} \leq T_k + 0 \times ubt_j$$

↪ Otherwise,

$$T_j + dt_j + 0 \times tr_{jk} \leq T_k + 1 \times ubt_j$$

Sequencing constraints:

$$\forall (j, k) \in \mathcal{T}^2, j \neq k,$$

$$T_j + \underbrace{dt_j}_{\text{duration of } j} + \sum_{i \in \mathcal{E}} U_{ijk} \underbrace{tr_{jk}}_{\substack{\text{travel duration} \\ j \rightarrow k}} \leq T_k + \left(1 - \sum_{i \in \mathcal{E}} U_{ijk}\right) \underbrace{ubt_j}_{\text{upper bound of } j}$$

↪ If there is an employee performing j then k ,

$$T_j + dt_j + 1 \times tr_{jk} \leq T_k + 0 \times ubt_j$$

↪ Otherwise,

$$T_j + dt_j + 0 \times tr_{jk} \leq T_k + 1 \times ubt_j$$

Sequencing constraints:

$$\forall (j, k) \in \mathcal{T}^2, j \neq k,$$

$$T_j + \underbrace{dt_j}_{\text{duration of } j} + \sum_{i \in \mathcal{E}} U_{ijk} \underbrace{tr_{jk}}_{\substack{\text{travel duration} \\ j \rightarrow k}} \leq T_k + \left(1 - \sum_{i \in \mathcal{E}} U_{ijk}\right) \underbrace{ubt_j}_{\text{upper bound of } j}$$

↪ If there is an employee performing j then k ,

$$T_j + dt_j + 1 \times tr_{jk} \leq T_k + 0 \times ubt_j$$

↪ Otherwise,

$$T_j + dt_j + 0 \times tr_{jk} \leq T_k + 1 \times ubt_j$$

Bi-objective Integer Linear Program (ILP) model:

lex max (total working duration, $-\text{total traveling duration}$)

s.t. - flow constraints
 - skill constraints
 - occurrence constraints
 - tasks availability constraints
 - employees working hours constraints
 - sequencing constraints

$U_{ijk} \in \{0, 1\}$ whether or not i goes from j to k , $\forall i \in \mathcal{E}, \forall (j, k) \in \mathcal{T}^2$
 $T_j \in \mathbb{N}$ start time of j , $\forall j \in \mathcal{T}$

Plan

- 1 Introduction
- 2 Related works
- 3 Mathematical model of the WSRP
- 4 Generating counterfactual explanations
- 5 Conclusion

1 Introduction

2 Related works

3 Mathematical model of the WSRP

4 Generating counterfactual explanations

- Explanations requested through questions
 - From questions to mathematical programming
 - From mathematical programming to explanations

5 Conclusion

Explanations requested through questions

List of end-user questions:

We propose **16 template questions** about **various topics**:

- **inserting** a task in an employee's route
e.g. "How to make \langle employee i^* \rangle perform \langle task j^* \rangle in addition to the tasks of their route?";
- **swapping** two tasks outside / inside a route;
- **changing the order** of tasks in a route.

We selected these questions as they satisfy some **assumptions**:

- they focus **on one solution**;
- they mention a "*desideratum*";
- they ask for **counterfactual** explanations ("how to ...").

List of end-user questions:

We propose **16 template questions** about **various topics**:

- **inserting** a task in an employee's route
e.g. "How to make \langle employee i^* \rangle perform \langle task j^* \rangle in addition to the tasks of their route?";
- **swapping** two tasks outside / inside a route;
- **changing the order** of tasks in a route.

We selected these questions as they satisfy some **assumptions**:

- they focus **on one solution**;
- they mention a "*desideratum*";
- they ask for **counterfactual** explanations ("how to ...").

Explanations requested through questions

List of end-user questions:

We propose **16 template questions** about **various topics**:

- **inserting** a task in an employee's route
 - e.g. "How to make \langle employee i^* \rangle perform \langle task j^* \rangle in addition to the tasks of their route?";
- **swapping** two tasks outside / inside a route;
- **changing the order** of tasks in a route.

We selected these questions as they satisfy some **assumptions**:

- they focus **on one solution**;
- they mention a "*desideratum*";
- they ask for **counterfactual** explanations ("how to ...").

Explanations requested through questions

List of end-user questions:

We propose **16 template questions** about **various topics**:

- **inserting** a task in an employee's route
 - e.g. "How to make \langle employee i^* \rangle perform \langle task j^* \rangle in addition to the tasks of their route?";
- **swapping** two tasks outside / inside a route;
- **changing the order** of tasks in a route.

We selected these questions as they satisfy some **assumptions**:

- they focus **on one solution**;
- they mention a "*desideratum*";
- they ask for **counterfactual** explanations ("how to ...").

Explanations requested through questions

List of end-user questions:

We propose **16 template questions** about **various topics**:

- **inserting** a task in an employee's route
 - e.g. "How to make \langle employee i^* \rangle perform \langle task j^* \rangle in addition to the tasks of their route?";
- **swapping** two tasks outside / inside a route;
- **changing the order** of tasks in a route.

We selected these questions as they satisfy some **assumptions**:

- they focus **on one solution**;
- they mention a "*desideratum*";
- they ask for **counterfactual** explanations ("how to ...").

Explanations requested through questions

List of end-user questions:

We propose **16 template questions** about **various topics**:

- **inserting** a task in an employee's route
 - e.g. "How to make \langle employee i^* \rangle perform \langle task j^* \rangle in addition to the tasks of their route?";
- **swapping** two tasks outside / inside a route;
- **changing the order** of tasks in a route.

We selected these questions as they satisfy some **assumptions**:

- they focus **on one solution**;
- they mention a "**desideratum**";
- they ask for **counterfactual** explanations ("how to ...").

List of end-user questions:

We propose **16 template questions** about **various topics**:

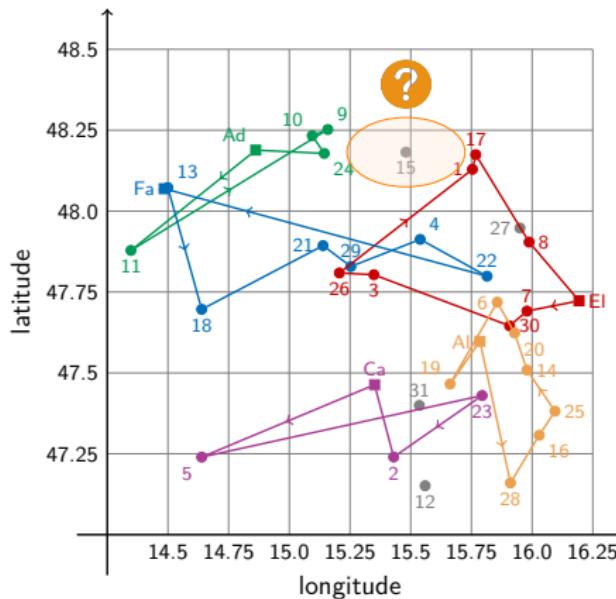
- **inserting** a task in an employee's route
 - e.g. "How to make \langle employee i^* \rangle perform \langle task j^* \rangle in addition to the tasks of their route?";
- **swapping** two tasks outside / inside a route;
- **changing the order** of tasks in a route.

We selected these questions as they satisfy some **assumptions**:

- they focus **on one solution**;
- they mention a "**desideratum**";
- they ask for **counterfactual** explanations ("how to ...").

Explanations requested through questions

List of end-user questions:


We propose **16 template questions** about **various topics**:

- **inserting** a task in an employee's route
 - e.g. "How to make \langle employee i^* \rangle perform \langle task j^* \rangle in addition to the tasks of their route?";
- **swapping** two tasks outside / inside a route;
- **changing the order** of tasks in a route.

We selected these questions as they satisfy some **assumptions**:

- they focus **on one solution**;
- they mention a "**desideratum**";
- they ask for **counterfactual** explanations ("how to ...").

A problematic situation for a planner:

“How to make Ellen perform task 15 in addition to the tasks of her route?”

- 1 Introduction
- 2 Related works
- 3 Mathematical model of the WSRP
- 4 Generating counterfactual explanations
 - Explanations requested through questions
 - **From questions to mathematical programming**
 - From mathematical programming to explanations
- 5 Conclusion

General principle:

Each question q is **mapped** to a **multi-obj. ILP model** which:

- aims at finding **how to alter the instance parameters** s.t.:
 1. we obtain a solution satisfying the *desideratum*;
 2. we minimize the **alterations (magnitude and number)**;
 3. we optimize the solution quality.
- is based on the WSRP model with **adaptations**:
 - focus on only one employee's route;
 - new decision variables, changes in constraints, changes in the objective functions, *etc.*

General principle:

Each question q is **mapped** to a **multi-obj. ILP model** which:

- aims at finding **how to alter the instance parameters** s.t.:
 1. we obtain a solution satisfying the *desideratum*;
 2. we minimize the **alterations (magnitude and number)**;
 3. we optimize the solution quality.
- is based on the WSRP model with **adaptations**:
 - focus on only one employee's route;
 - new decision variables, changes in constraints, changes in the objective functions, *etc.*

General principle:

Each question q is **mapped** to a **multi-obj. ILP model** which:

- aims at finding **how to alter the instance parameters** s.t.:
 1. we obtain a solution satisfying the *desideratum*;
 2. we minimize the *alterations (magnitude and number)*;
 3. we optimize the solution quality.
- is based on the WSRP model with **adaptations**:
 - focus on only one employee's route;
 - new decision variables, changes in constraints, changes in the objective functions, etc.

General principle:

Each question q is **mapped** to a **multi-obj. ILP model** which:

- aims at finding **how to alter the instance parameters** s.t.:
 1. we obtain a solution satisfying the *desideratum*;
 2. we minimize the **alterations (magnitude and number)**;
 3. we optimize the solution quality.
- is based on the WSRP model with **adaptations**:
 - focus on only one employee's route;
 - new decision variables, changes in constraints, changes in the objective functions, etc.

General principle:

Each question q is **mapped** to a **multi-obj. ILP model** which:

- aims at finding **how to alter the instance parameters** s.t.:
 1. we obtain a solution satisfying the *desideratum*;
 2. we minimize the **alterations (magnitude and number)**;
 3. we optimize the solution quality.
- is based on the WSRP model with **adaptations**:
 - focus on only one employee's route;
 - new decision variables, changes in constraints, changes in the objective functions, etc.

General principle:

Each question q is **mapped** to a **multi-obj. ILP model** which:

- aims at finding **how to alter the instance parameters** s.t.:
 1. we obtain a solution satisfying the *desideratum*;
 2. we minimize the **alterations (magnitude and number)**;
 3. we optimize the solution quality.
- is based on the WSRP model with **adaptations**:
 - focus on only one employee's route;
 - new decision variables, changes in constraints, changes in the objective functions, etc.

General principle:

Each question q is **mapped** to a **multi-obj. ILP model** which:

- aims at finding **how to alter the instance parameters** s.t.:
 1. we obtain a solution satisfying the *desideratum*;
 2. we minimize the **alterations (magnitude and number)**;
 3. we optimize the solution quality.
- is based on the WSRP model with **adaptations**:
 - focus on only one employee's route;
 - new decision variables, changes in constraints, changes in the objective functions, etc.

General principle:

Each question q is **mapped** to a **multi-obj. ILP model** which:

- aims at finding **how to alter the instance parameters** s.t.:
 1. we obtain a solution satisfying the *desideratum*;
 2. we minimize the **alterations (magnitude and number)**;
 3. we optimize the solution quality.
- is based on the WSRP model with **adaptations**:
 - focus on only one employee's route;
 - new decision variables, changes in constraints, changes in the objective functions, *etc.*

Multi-objective ILP model on an example of question:

Let q be a question based on “How to make $\langle \text{employee } i^* \rangle$ perform $\langle \text{task } j^* \rangle$ in addition to the tasks of their route?”

Some preliminary remarks:

- We can work with a **reduced set of tasks**
 $\mathcal{T}^* = \{j \text{ performed by } i^* \text{ in solution}\} \cup \{j^*\}.$
- We assume that the user wants to alter only **task time parameters** (dt_j , lbt_j , ubt_j) within some acceptable ranges.
- We introduce new **decision variables** including:
 - ΔDT_j , decrease of dt_j , for all $j \in \mathcal{T}^*$;
 - ΔT_{max} , greatest value of time alterations;
 - T_{j^*} split in two and replaced by $T_{j^*}^{lb}$ and $T_{j^*}^{ub}$:
earliest start time of j^* when satisfying time constraints before,
latest start time of j^* when satisfying time constraints after.

Multi-objective ILP model on an example of question:

Let q be a question based on “How to make $\langle \text{employee } i^* \rangle$ perform $\langle \text{task } j^* \rangle$ in addition to the tasks of their route?”

Some preliminary remarks:

- We can work with a **reduced set of tasks**
 $\mathcal{T}^* = \{j \text{ performed by } i^* \text{ in solution}\} \cup \{j^*\}.$
- We assume that the user wants to alter only **task time parameters** (dt_j , lbt_j , ubt_j) within some acceptable ranges.
- We introduce new **decision variables** including:
 - ΔDT_j , decrease of dt_j , for all $j \in \mathcal{T}^*$;
 - ΔT_{max} , greatest value of time alterations;
 - T_{j^*} split in two and replaced by $T_{j^*}^{lb}$ and $T_{j^*}^{ub}$:
earliest start time of j^* when satisfying time constraints before,
latest start time of j^* when satisfying time constraints after.

Multi-objective ILP model on an example of question:

Let q be a question based on “How to make $\langle \text{employee } i^* \rangle$ perform $\langle \text{task } j^* \rangle$ in addition to the tasks of their route?”

Some preliminary remarks:

- We can work with a **reduced set of tasks**

$$\mathcal{T}^* = \{j \text{ performed by } i^* \text{ in solution}\} \cup \{j^*\}.$$

- We assume that the user wants to alter only **task time parameters** (dt_j , lbt_j , ubt_j) within some acceptable ranges.
- We introduce new **decision variables** including:

- ΔDT_j , decrease of dt_j , for all $j \in \mathcal{T}^*$;
- ΔT_{max} , greatest value of time alterations;
- T_{j^*} split in two and replaced by $T_{j^*}^{lb}$ and $T_{j^*}^{ub}$:
earliest start time of j^* when satisfying time constraints before,
latest start time of j^* when satisfying time constraints after.

Multi-objective ILP model on an example of question:

Let q be a question based on “How to make $\langle \text{employee } i^* \rangle$ perform $\langle \text{task } j^* \rangle$ in addition to the tasks of their route?”

Some preliminary remarks:

- We can work with a **reduced set of tasks**
 $\mathcal{T}^* = \{j \text{ performed by } i^* \text{ in solution}\} \cup \{j^*\}.$

- We assume that the user wants to alter only **task time parameters** (dt_j , lbt_j , ubt_j) within some acceptable ranges.

- We introduce new **decision variables** including:

- ΔDT_j , decrease of dt_j , for all $j \in \mathcal{T}^*$;
- ΔT_{max} , greatest value of time alterations;
- T_{j^*} split in two and replaced by $T_{j^*}^{lb}$ and $T_{j^*}^{ub}$:
earliest start time of j^* when satisfying time constraints before,
latest start time of j^* when satisfying time constraints after.

Multi-objective ILP model on an example of question:

Let q be a question based on “How to make $\langle \text{employee } i^* \rangle$ perform $\langle \text{task } j^* \rangle$ in addition to the tasks of their route?”

Some preliminary remarks:

- We can work with a **reduced set of tasks**

$$\mathcal{T}^* = \{j \text{ performed by } i^* \text{ in solution}\} \cup \{j^*\}.$$

- We assume that the user wants to alter only **task time parameters** (dt_j , lbt_j , ubt_j) within some acceptable ranges.
- We introduce new **decision variables** including:

- ΔDT_j , decrease of dt_j , for all $j \in \mathcal{T}^*$;
- ΔT_{max} , greatest value of time alterations;
- T_{j^*} split in two and replaced by $T_{j^*}^{lb}$ and $T_{j^*}^{ub}$:
earliest start time of j^* when satisfying time constraints before,
latest start time of j^* when satisfying time constraints after.

Multi-objective ILP model on an example of question:

Let q be a question based on “How to make $\langle \text{employee } i^* \rangle$ perform $\langle \text{task } j^* \rangle$ in addition to the tasks of their route?”

Some preliminary remarks:

- We can work with a **reduced set of tasks**

$$\mathcal{T}^* = \{j \text{ performed by } i^* \text{ in solution}\} \cup \{j^*\}.$$

- We assume that the user wants to alter only **task time parameters** (dt_j , lbt_j , ubt_j) within some acceptable ranges.
- We introduce new **decision variables** including:

- ΔDT_j , decrease of dt_j , for all $j \in \mathcal{T}^*$;
- ΔT_{max} , greatest value of time alterations;
- T_{j^*} split in two and replaced by $T_{j^*}^{lb}$ and $T_{j^*}^{ub}$:
earliest start time of j^* when satisfying time constraints before,
latest start time of j^* when satisfying time constraints after.

Multi-objective ILP model on an example of question:

Let q be a question based on “How to make $\langle \text{employee } i^* \rangle$ perform $\langle \text{task } j^* \rangle$ in addition to the tasks of their route?”

Some preliminary remarks:

- We can work with a **reduced set of tasks**
 $\mathcal{T}^* = \{j \text{ performed by } i^* \text{ in solution}\} \cup \{j^*\}.$
- We assume that the user wants to alter only **task time parameters** (dt_j , lbt_j , ubt_j) within some acceptable ranges.
- We introduce new **decision variables** including:
 - ΔDT_j , decrease of dt_j , for all $j \in \mathcal{T}^*$;
 - ΔT_{max} , greatest value of time alterations;
 - T_{j^*} split in two and replaced by $T_{j^*}^{lb}$ and $T_{j^*}^{ub}$:
earliest start time of j^* when satisfying time constraints before,
latest start time of j^* when satisfying time constraints after.

Multi-objective ILP model on an example of question:

Let q be a question based on “How to make $\langle \text{employee } i^* \rangle$ perform $\langle \text{task } j^* \rangle$ in addition to the tasks of their route?”

Some preliminary remarks:

- We can work with a **reduced set of tasks**
 $\mathcal{T}^* = \{j \text{ performed by } i^* \text{ in solution}\} \cup \{j^*\}.$

- We assume that the user wants to alter only **task time parameters** (dt_j , lbt_j , ubt_j) within some acceptable ranges.
- We introduce new **decision variables** including:

- ΔDT_j , decrease of dt_j , for all $j \in \mathcal{T}^*$;
- ΔT_{max} , greatest value of time alterations;
- T_{j^*} split in two and replaced by $T_{j^*}^{lb}$ and $T_{j^*}^{ub}$:
earliest start time of j^* when satisfying time constraints before,
latest start time of j^* when satisfying time constraints after.

Multi-objective ILP model on an example of question:

Let q be a question based on “How to make $\langle \text{employee } i^* \rangle$ perform $\langle \text{task } j^* \rangle$ in addition to the tasks of their route?”

Some preliminary remarks:

- We can work with a **reduced set of tasks**
 $\mathcal{T}^* = \{j \text{ performed by } i^* \text{ in solution}\} \cup \{j^*\}.$
- We assume that the user wants to alter only **task time parameters** (dt_j , lbt_j , ubt_j) within some acceptable ranges.
- We introduce new **decision variables** including:
 - ΔDT_j , decrease of dt_j , for all $j \in \mathcal{T}^*$;
 - ΔT_{max} , greatest value of time alterations;
 - T_{j^*} split in two and replaced by $T_{j^*}^{lb}$ and $T_{j^*}^{ub}$:
earliest start time of j^* when satisfying time constraints before,
latest start time of j^* when satisfying time constraints after.

From questions to mathematical programming

Multi-objective ILP model on an example of question:

lex min $(T_{j^*}^{lb} - T_{j^*}^{ub}, \sum_{j \in \mathcal{T}^*} \Delta DT_j, \Delta T_{max}, \text{nb of alterations,}$
total traveling duration)

s.t. - adjusted flow constraints
- adjusted occurrence constraints
- adjusted tasks availability constraints
- adjusted working hours constraints
- adjusted sequencing constraints
- constraints on altering variables like ΔDT_j

$U_{i^*jk} \in \{0, 1\}$ whether or not i^* goes from j to k , $\forall (j, k) \in (\mathcal{T}^*)^2$

$T_j \in \mathbb{N}$ start time of j $\forall j \in \mathcal{T}^*$

$T_{j^*}^{ub}, T_{j^*}^{lb} \in \mathbb{N}$ bounds on the start time of j^*

$\Delta DT_j \in \mathbb{N}$ decrease of the duration of j $\forall j \in \mathcal{T}^*$

...

$\Delta T_{max} \in \mathbb{N}$ greatest value of time alterations

Multi-objective ILP model on an example of question:

$$\text{lex min } (T_{j^*}^{lb} - T_{j^*}^{ub}, \sum_{j \in \mathcal{T}^*} \Delta DT_j, \Delta T_{max}, \text{ nb of alterations,} \\ \text{total traveling duration})$$

s.t.

- adjusted flow constraints
- adjusted occurrence constraints
- adjusted tasks availability constraints
- adjusted working hours constraints
- adjusted sequencing constraints
- constraints on altering variables like ΔDT_j

$U_{i^*jk} \in \{0, 1\}$ whether or not i^* goes from j to k , $\forall (j, k) \in (\mathcal{T}^*)^2$

$T_j \in \mathbb{N}$ start time of j $\forall j \in \mathcal{T}^*$

$T_{j^*}^{ub}, T_{j^*}^{lb} \in \mathbb{N}$ bounds on the start time of j^*

$\Delta DT_j \in \mathbb{N}$ decrease of the duration of j $\forall j \in \mathcal{T}^*$

...

$\Delta T_{max} \in \mathbb{N}$ greatest value of time alterations

Multi-objective ILP model on an example of question:

$$\text{lex min } (T_{j^*}^{lb} - T_{j^*}^{ub}, \sum_{j \in \mathcal{T}^*} \Delta DT_j, \Delta T_{max}, \text{ nb of alterations,} \\ \text{ total traveling duration})$$

s.t.

- adjusted flow constraints
- adjusted occurrence constraints
- adjusted tasks availability constraints
- adjusted working hours constraints
- adjusted sequencing constraints
- constraints on altering variables like ΔDT_j

$U_{i^*jk} \in \{0, 1\}$ whether or not i^* goes from j to k , $\forall (j, k) \in (\mathcal{T}^*)^2$

$T_j \in \mathbb{N}$ start time of j $\forall j \in \mathcal{T}^*$

$T_{j^*}^{ub}, T_{j^*}^{lb} \in \mathbb{N}$ bounds on the start time of j^*

$\Delta DT_j \in \mathbb{N}$ decrease of the duration of j $\forall j \in \mathcal{T}^*$

...

$\Delta T_{max} \in \mathbb{N}$ greatest value of time alterations

Multi-objective ILP model on an example of question:

lex min $(T_{j^*}^{lb} - T_{j^*}^{ub}, \sum_{j \in \mathcal{T}^*} \Delta DT_j, \Delta T_{max}, \text{nb of alterations,}$
total traveling duration)

s.t.

- adjusted flow constraints
- adjusted occurrence constraints
- adjusted tasks availability constraints
- adjusted working hours constraints
- adjusted sequencing constraints
- constraints on altering variables like ΔDT_j

$U_{i^*jk} \in \{0, 1\}$ whether or not i^* goes from j to k , $\forall (j, k) \in (\mathcal{T}^*)^2$

$T_j \in \mathbb{N}$ start time of j $\forall j \in \mathcal{T}^*$

$T_{j^*}^{ub}, T_{j^*}^{lb} \in \mathbb{N}$ bounds on the start time of j^*

$\Delta DT_j \in \mathbb{N}$ decrease of the duration of j $\forall j \in \mathcal{T}^*$

...

$\Delta T_{max} \in \mathbb{N}$ greatest value of time alterations

Multi-objective ILP model on an example of question:

$$\text{lex min } (T_{j^*}^{lb} - T_{j^*}^{ub}, \sum_{j \in \mathcal{T}^*} \Delta DT_j, \Delta T_{max}, \text{ nb of alterations,} \\ \text{ total traveling duration})$$

s.t.

- adjusted flow constraints
- adjusted occurrence constraints
- adjusted tasks availability constraints
- adjusted working hours constraints
- **adjusted sequencing constraints**
- constraints on altering variables like ΔDT_j

$U_{i^*jk} \in \{0, 1\}$ whether or not i^* goes from j to k , $\forall (j, k) \in (\mathcal{T}^*)^2$

$T_j \in \mathbb{N}$ start time of j $\forall j \in \mathcal{T}^*$

$T_{j^*}^{ub}, T_{j^*}^{lb} \in \mathbb{N}$ bounds on the start time of j^*

$\Delta DT_j \in \mathbb{N}$ decrease of the duration of j $\forall j \in \mathcal{T}^*$

...

$\Delta T_{max} \in \mathbb{N}$ greatest value of time alterations

Sequencing constraints:

$$\forall (j, k) \in \mathcal{T}^2, j \neq k,$$

$$T_j + \underbrace{dt_j}_{\substack{\text{duration} \\ \text{of } j}} + \sum_{i \in \mathcal{E}} U_{ijk} \underbrace{tr_{jk}}_{\substack{\text{travel} \\ \text{duration} \\ j \rightarrow k}} \leq T_k + \left(1 - \sum_{i \in \mathcal{E}} U_{ijk}\right) \underbrace{ubt_j}_{\substack{\text{upper} \\ \text{bound} \\ \text{of } j}}$$

↪ If there is an employee performing j then k ,

$$T_j + dt_j + 1 \times tr_{jk} \leq T_k + 0 \times ubt_j$$

↪ Otherwise,

$$T_j + dt_j + 0 \times tr_{jk} \leq T_k + 1 \times ubt_j$$

Sequencing constraints with altering variables:

3 groups of constraints instead of 1:

- $\forall (j, k) \in (\mathcal{T}^* \setminus \{j^*\})^2, j \neq k,$
$$T_j + dt_j - \Delta DT_j + U_{i^*jk} tr_{jk} \leq T_k + (1 - U_{i^*jk}) ubt_j$$
- $\forall k \in \mathcal{T}^* \setminus \{j^*\},$
$$T_{j^*}^{ub} + dt_{j^*} - \Delta DT_{j^*} + U_{i^*j^*k} tr_{j^*k} \leq T_k + (1 - U_{i^*j^*k}) ubt_{j^*}$$
- $\forall j \in \mathcal{T}^* \setminus \{j^*\},$
$$T_j + dt_j - \Delta DT_j + U_{i^*jj^*} tr_{jj^*} \leq T_{j^*}^{lb} + (1 - U_{i^*jj^*}) ubt_j$$

Sequencing constraints with altering variables:

3 groups of constraints instead of 1:

- $\forall (j, k) \in (\mathcal{T}^* \setminus \{j^*\})^2, j \neq k,$

$$T_j + dt_j - \Delta DT_j + U_{i^*jk} tr_{jk} \leq T_k + (1 - U_{i^*jk}) ubt_j$$

- $\forall k \in \mathcal{T}^* \setminus \{j^*\},$

$$T_{j^*}^{ub} + dt_{j^*} - \Delta DT_{j^*} + U_{i^*j^*k} tr_{j^*k} \leq T_k + (1 - U_{i^*j^*k}) ubt_{j^*}$$

- $\forall j \in \mathcal{T}^* \setminus \{j^*\},$

$$T_j + dt_j - \Delta DT_j + U_{i^*jj^*} tr_{jj^*} \leq T_{j^*}^{lb} + (1 - U_{i^*jj^*}) ubt_j$$

Sequencing constraints with altering variables:

3 groups of constraints instead of 1:

- $\forall (j, k) \in (\mathcal{T}^* \setminus \{j^*\})^2, j \neq k,$
$$T_j + dt_j - \Delta DT_j + U_{i^*jk} tr_{jk} \leq T_k + (1 - U_{i^*jk}) ubt_j$$
- $\forall k \in \mathcal{T}^* \setminus \{j^*\},$
$$T_{j^*}^{ub} + dt_{j^*} - \Delta DT_{j^*} + U_{i^*j^*k} tr_{j^*k} \leq T_k + (1 - U_{i^*j^*k}) ubt_{j^*}$$
- $\forall j \in \mathcal{T}^* \setminus \{j^*\},$
$$T_j + dt_j - \Delta DT_j + U_{i^*jj^*} tr_{jj^*} \leq T_{j^*}^{lb} + (1 - U_{i^*jj^*}) ubt_j$$

Sequencing constraints with altering variables:

3 groups of constraints instead of 1:

- $\forall (j, k) \in (\mathcal{T}^* \setminus \{j^*\})^2, j \neq k,$
$$T_j + dt_j - \Delta DT_j + U_{i^*jk} tr_{jk} \leq T_k + (1 - U_{i^*jk}) ubt_j$$
- $\forall k \in \mathcal{T}^* \setminus \{j^*\},$
$$T_{j^*}^{ub} + dt_{j^*} - \Delta DT_{j^*} + U_{i^*j^*k} tr_{j^*k} \leq T_k + (1 - U_{i^*j^*k}) ubt_{j^*}$$
- $\forall j \in \mathcal{T}^* \setminus \{j^*\},$
$$T_j + dt_j - \Delta DT_j + U_{i^*jj^*} tr_{jj^*} \leq T_{j^*}^{lb} + (1 - U_{i^*jj^*}) ubt_j$$

From questions to mathematical programming

Multi-objective ILP model on an example of question:

$$\text{lex min } (T_{j^*}^{lb} - T_{j^*}^{ub}, \sum_{j \in \mathcal{T}^*} \Delta DT_j, \Delta T_{max}, \text{ nb of alterations,} \\ \text{ total traveling duration})$$

s.t.

- adjusted flow constraints
- adjusted occurrence constraints
- adjusted tasks availability constraints
- adjusted working hours constraints
- adjusted sequencing constraints
- constraints on altering variables like ΔDT_j

$U_{i^*jk} \in \{0, 1\}$ whether or not i^* goes from j to k , $\forall (j, k) \in (\mathcal{T}^*)^2$

$T_j \in \mathbb{N}$ start time of j $\forall j \in \mathcal{T}^*$

$T_{j^*}^{ub}, T_{j^*}^{lb} \in \mathbb{N}$ bounds on the start time of j^*

$\Delta DT_j \in \mathbb{N}$ decrease of the duration of j $\forall j \in \mathcal{T}^*$

...

$\Delta T_{max} \in \mathbb{N}$ greatest value of time alterations

- 1 Introduction
- 2 Related works
- 3 Mathematical model of the WSRP
- 4 Generating counterfactual explanations
 - Explanations requested through questions
 - From questions to mathematical programming
 - From mathematical programming to explanations
- 5 Conclusion

3 cases of explanations:

Assume that the multi-objective ILP model has been solved.

1. $T_{j^*}^{lb} - T_{j^*}^{ub} = 0$ and $\Delta T_{max} > 0$

↪ The *desideratum* is obtained **thanks to alterations**.

2. $T_{j^*}^{lb} - T_{j^*}^{ub} = 0$ and $\Delta T_{max} = 0$

↪ The *desideratum* is obtained **without any alterations**.

3. $T_{j^*}^{lb} - T_{j^*}^{ub} > 0$

↪ Alterations ranges are **not enough** to get the *desideratum*.

3 cases of explanations:

Assume that the multi-objective ILP model has been solved.

1. $T_{j^*}^{lb} - T_{j^*}^{ub} = 0$ and $\Delta T_{max} > 0$

↪ The *desideratum* is obtained **thanks to alterations**.

2. $T_{j^*}^{lb} - T_{j^*}^{ub} = 0$ and $\Delta T_{max} = 0$

↪ The *desideratum* is obtained **without any alterations**.

3. $T_{j^*}^{lb} - T_{j^*}^{ub} > 0$

↪ Alterations ranges are **not enough** to get the *desideratum*.

3 cases of explanations:

Assume that the multi-objective ILP model has been solved.

1. $T_{j^*}^{lb} - T_{j^*}^{ub} = 0$ and $\Delta T_{max} > 0$

↪ The *desideratum* is obtained **thanks to alterations**.

2. $T_{j^*}^{lb} - T_{j^*}^{ub} = 0$ and $\Delta T_{max} = 0$

↪ The *desideratum* is obtained **without any alterations**.

3. $T_{j^*}^{lb} - T_{j^*}^{ub} > 0$

↪ Alterations ranges are **not enough** to get the *desideratum*.

3 cases of explanations:

Assume that the multi-objective ILP model has been solved.

1. $T_{j^*}^{lb} - T_{j^*}^{ub} = 0$ and $\Delta T_{max} > 0$
 - ↪ The *desideratum* is obtained **thanks to alterations**.
2. $T_{j^*}^{lb} - T_{j^*}^{ub} = 0$ and $\Delta T_{max} = 0$
 - ↪ The *desideratum* is obtained **without any alterations**.
3. $T_{j^*}^{lb} - T_{j^*}^{ub} > 0$
 - ↪ Alterations ranges are **not enough** to get the *desideratum*.

3 cases of explanations:

Assume that the multi-objective ILP model has been solved.

1. $T_{j^*}^{lb} - T_{j^*}^{ub} = 0$ and $\Delta T_{max} > 0$

↪ The *desideratum* is obtained **thanks to alterations**.

2. $T_{j^*}^{lb} - T_{j^*}^{ub} = 0$ and $\Delta T_{max} = 0$

↪ The *desideratum* is obtained **without any alterations**.

3. $T_{j^*}^{lb} - T_{j^*}^{ub} > 0$

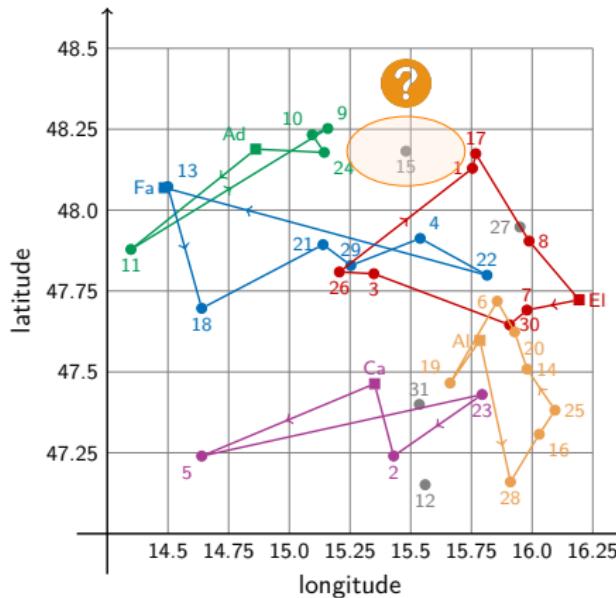
↪ Alterations ranges are **not enough** to get the *desideratum*.

Explanation text in case 1.:

“By \langle applying the alterations of the instance parameters given by positive values of altering variables like $\Delta DT_j\rangle$,
 \langle the *desideratum* \rangle would be possible;
in this case, the solution would be \langle the one deduced from the ILP optimal result \rangle .”

Explanation text in case 1.:

“By *applying the alterations of the instance parameters given by positive values of altering variables like ΔDT_j* ,
the desideratum would be possible;
in this case, the solution would be *(the one deduced from the ILP optimal result)*.”


Explanation text in case 1.:

“By *applying the alterations of the instance parameters given by positive values of altering variables like ΔDT_j* ,
*the *desideratum* would be possible;*
in this case, the solution would be (the one deduced from the ILP optimal result).”

Explanation text in case 1.:

“By (applying the alterations of the instance parameters given by positive values of altering variables like ΔDT_j),
(the *desideratum*) would be possible;
in this case, the solution would be (the one deduced from the ILP
optimal result).”

A problematic situation for a planner:

“How to make Ellen
perform task 15 in addition
to the tasks of her route?”

- If no explanations, then black box feeling...

Explanation text in case 1.:

“By (applying the alterations of the instance parameters given by positive values of altering variables like ΔDT_j),
(the *desideratum*) would be possible;
in this case, the solution would be (the one deduced from the ILP
optimal result).”

Explanation text in case 1.:

“By *applying the alterations of the instance parameters given by positive values of altering variables like ΔDT_j* ,
*the *desideratum* would be possible;*
*in this case, the solution would be *(the one deduced from the ILP optimal result)*.*”

Explanation text in case 1.:

“By changing the opening time of task 17 to 12:29PM (instead of 12:30PM in the current input data),
{the *desideratum*} would be possible;
in this case, the solution would be {the one deduced from the ILP optimal result}.”

Explanation text in case 1.:

“By changing the opening time of task 17 to 12:29PM (instead of 12:30PM in the current input data),
{the *desideratum*} would be possible;
in this case, the solution would be {the one deduced from the ILP optimal result}.”

Explanation text in case 1.:

“By changing the opening time of task 17 to 12:29PM (instead of 12:30PM in the current input data), making Ellen perform the task 15 in addition to her already-performed tasks would be possible, in this case, the solution would be (the one deduced from the ILP optimal result).”

Explanation text in case 1.:

“By changing the opening time of task 17 to 12:29PM (instead of 12:30PM in the current input data), making Ellen perform the task 15 in addition to her already-performed tasks would be possible, in this case, the solution would be (the one deduced from the ILP optimal result).”

Explanation text in case 1.:

“By changing the opening time of task 17 to 12:29PM (instead of 12:30PM in the current input data), making Ellen perform the task 15 in addition to her already-performed tasks would be possible, in this case, the solution would be the one obtained by changing Ellen's sequence of performed tasks to [30, 7, 8, 1, 17, 15, 26, 3].”

Plan

- 1 Introduction
- 2 Related works
- 3 Mathematical model of the WSRP
- 4 Generating counterfactual explanations
- 5 Conclusion

Achieved work in this article:

Approach for generating **counterfactual explanations** that:

- is thought for an end-user of a system solving a **WSRP**;
- starts from user **questions** about various *desiderata*;
- is based on **mathematical programming**;
- ends on explanations given as **texts**.

Related work:

Approach for generating **contrastive explanations**:

[Lerouge et al., 2022] Explaining solutions stemming from optimization systems solving the Workforce Scheduling and Routing Problem to their end-users (Working paper).

Achieved work in this article:

Approach for generating **counterfactual explanations** that:

- is thought for an end-user of a system solving a **WSRP**;
- starts from user **questions** about various *desiderata*;
- is based on **mathematical programming**;
- ends on explanations given as **texts**.

Related work:

Approach for generating **contrastive explanations**:

[Lerouge et al., 2022] Explaining solutions stemming from optimization systems solving the Workforce Scheduling and Routing Problem to their end-users (Working paper).

Work in progress:

- Perform an exhaustive study for assessing **computational efficiency**.
- Evaluate how explanations influence **end-users' trust**.
- Design an explanation system handling **various types of explanations** (contrastive, scenario and counterfactual).

Perspectives:

How much **generic** is our **approach**? Can we transpose it to other optimization problems?

Work in progress:

- Perform an exhaustive study for assessing **computational efficiency**.
- Evaluate how explanations influence **end-users' trust**.
- Design an explanation system handling **various types of explanations** (contrastive, scenario and counterfactual).

Perspectives:

How much **generic** is our **approach**? Can we transpose it to other optimization problems?

Work in progress:

- Perform an exhaustive study for assessing **computational efficiency**.
- Evaluate how explanations influence **end-users' trust**.
- Design an explanation system handling **various types of explanations** (contrastive, scenario and counterfactual).

Perspectives:

How much **generic** is our **approach**? Can we transpose it to other optimization problems?

Work in progress:

- Perform an exhaustive study for assessing **computational efficiency**.
- Evaluate how explanations influence **end-users' trust**.
- Design an explanation system handling **various types of explanations** (contrastive, scenario and counterfactual).

Perspectives:

How much **generic** is our **approach**? Can we transpose it to other optimization problems?

Work in progress:

- Perform an exhaustive study for assessing **computational efficiency**.
- Evaluate how explanations influence **end-users' trust**.
- Design an explanation system handling **various types of explanations** (contrastive, scenario and counterfactual).

Perspectives:

How much **generic** is our **approach**? Can we transpose it to other optimization problems?

Thank you for your attention!

[Barredo Arrieta et al., 2020] Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R., and Herrera, F. (2020).

Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI.

Information fusion, 58:82–115.

[Chakraborti et al., 2020] Chakraborti, T., Sreedharan, S., and Kambhampati, S. (2020).

The emerging landscape of Explainable AI Planning and Decision Making.

In *Proceedings of the twenty-ninth International Joint Conference on Artificial Intelligence*, pages 4803–4811. IJCAI Organization.

[Junker, 2004] Junker, U. (2004).

Quickxplain: Preferred explanations and relaxations for over-constrained problems.

In *Proceedings of the ninetieth Association for the Advancement of Artificial Intelligence Conference on Artificial Intelligence*, page 167–172. AAAI Press.

References III

[Korikov et al., 2021] Korikov, A., Shleyfman, A., and Beck, C. (2021). Counterfactual explanations for optimization-based decisions in the context of the GDPR. In *Proceedings of the thirtieth International Joint Conference on Artificial Intelligence*, pages 4097 – 4103. IJCAI Organization.

[Krarup et al., 2021] Krarup, B., Krivic, S., Magazzeni, D., Long, D., Cashmore, M., and Smith, D. E. (2021). Contrastive explanations of plans through model restrictions.

[Lerouge et al., 2022] Lerouge, M., Gicquel, C., Mousseau, V., and Ouerdane, W. (2022).

Explaining solutions stemming from optimization systems solving the Workforce Scheduling and Routing Problem to their end-users.

Working paper

<https://hal.archives-ouvertes.fr/hal-03795653>.

[Wachter et al., 2018] Wachter, S., Mittelstadt, B., and Russell, C. (2018).

Counterfactual explanations without opening the black box: Automated decisions and the GDPR.

[Harvard Journal of Law & Technology, 31.](#)

[Wick and Thompson, 1992] Wick, M. and Thompson, W. (1992). **Reconstructive Expert System explanation.** *Artificial Intelligence*, 54:33–70.