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Introduction

Motivations

3 observations:

(1) Real-world situations modeled as Combinatorial
Optimization (CO) problems (e.g. workforce management);

(2) CO problems solved using optimization systems that are
developed by experts (e.g. DecisionBrain);

(3) Optimization systems are used by non-expert people.
↪ End-users may experience a black box feeling.

Let see (1), (2) and (3) in our use case.
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Introduction

Use case - (1) CO problem

Workforce Scheduling and Routing Problem (WSRP):
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Use case - (1) CO problem

Workforce Scheduling and Routing Problem (WSRP):
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Introduction

Our use case - (2) Optimization system

WSRP-solving system:
e.g DecisionBrain’s Dynamic Scheduler
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Planner:
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A problematic situation for a planner:
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↪ If no explanations, then black box feeling...
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Tackling the black box feeling experienced by non-expert
end-users solving WSRP instances, by generating explanations to
help them better understand their WSRP solutions.
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Related works

Explanations in Artificial Intelligence

Literature on eXplainable Artificial Intelligence (XAI):
Works on explanations:

Many in Machine Learning [Barredo Arrieta et al., 2020].
Some in other AI fields including

- Expert Systems, [Wick and Thompson, 1992],
- Planning, e.g. [Chakraborti et al., 2020],
- Constraint Programming, e.g. [Junker, 2004].

Few ones in Combinatorial Optimization (CO),
e.g. [Korikov et al., 2021].

↪ Survey concepts about explanations in AI fields other than
CO and transpose them to CO.

[Barredo Arrieta et al., 2020] XAI: Concepts, taxonomies, opportunities and challenges toward responsible AI
[Wick and Thompson, 1992] Reconstructive Expert System explanation
[Chakraborti et al., 2020] The emerging landscape of explainable AI planning and decision making
[Junker, 2004] QuickXplain: preferred explanations and relaxations for over-constrained problems
[Korikov et al., 2021] Counterfactual Explanations for Optimization-Based Decisions in the Context of the GDPR
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Related works

Explanations in Artificial Intelligence

Some recurrent concepts in XAI methods:
Explanations are often:
● local [Wick and Thompson, 1992], i.e. focusing on a specific
output generated by the system.

● counterfactual [Wachter et al., 2018], i.e. explanations
which present alterations in the inputs that would have
resulted in different outputs (e.g. end-user-specified one).

● formulated as texts using templates, e.g.
[Krarup et al., 2021].

[Wick and Thompson, 1992] Reconstructive expert system explanation
[Wachter et al., 2018] Counterfactual explanations w/o opening the black box: automated decisions and the GDPR
[Krarup et al., 2021] Contrastive explanations of plans through model restrictions

Mathieu Lerouge ICORES 2023 19 February 2023 10 / 24



Related works

Explanations in Artificial Intelligence

Some recurrent concepts in XAI methods:
Explanations are often:
● local [Wick and Thompson, 1992], i.e. focusing on a specific
output generated by the system.

● counterfactual [Wachter et al., 2018], i.e. explanations
which present alterations in the inputs that would have
resulted in different outputs (e.g. end-user-specified one).

● formulated as texts using templates, e.g.
[Krarup et al., 2021].

[Wick and Thompson, 1992] Reconstructive expert system explanation
[Wachter et al., 2018] Counterfactual explanations w/o opening the black box: automated decisions and the GDPR
[Krarup et al., 2021] Contrastive explanations of plans through model restrictions

Mathieu Lerouge ICORES 2023 19 February 2023 10 / 24



Related works

Explanations in Artificial Intelligence

Some recurrent concepts in XAI methods:
Explanations are often:
● local [Wick and Thompson, 1992], i.e. focusing on a specific
output generated by the system.

● counterfactual [Wachter et al., 2018], i.e. explanations
which present alterations in the inputs that would have
resulted in different outputs (e.g. end-user-specified one).

● formulated as texts using templates, e.g.
[Krarup et al., 2021].

[Wick and Thompson, 1992] Reconstructive expert system explanation
[Wachter et al., 2018] Counterfactual explanations w/o opening the black box: automated decisions and the GDPR
[Krarup et al., 2021] Contrastive explanations of plans through model restrictions

Mathieu Lerouge ICORES 2023 19 February 2023 10 / 24



Related works

Explanations in Artificial Intelligence

Some recurrent concepts in XAI methods:
Explanations are often:
● local [Wick and Thompson, 1992], i.e. focusing on a specific
output generated by the system.

● counterfactual [Wachter et al., 2018], i.e. explanations
which present alterations in the inputs that would have
resulted in different outputs (e.g. end-user-specified one).

● formulated as texts using templates, e.g.
[Krarup et al., 2021].

[Wick and Thompson, 1992] Reconstructive expert system explanation
[Wachter et al., 2018] Counterfactual explanations w/o opening the black box: automated decisions and the GDPR
[Krarup et al., 2021] Contrastive explanations of plans through model restrictions

Mathieu Lerouge ICORES 2023 19 February 2023 10 / 24



Related works

Plan

1 Introduction

2 Related works
Explanations in Artificial Intelligence
Our proposition (with more details)

3 Mathematical model of the WSRP

4 Generating counterfactual explanations

5 Conclusion



Related works

Our proposition (with more details)

Tackling the black box feeling experienced by non-expert
end-users solving WSRP instances, by generating explanations to
help them better understand their WSRP solutions.

Generating explanations which are:
- focusing on a given solution,
- counterfactual,
- expressed as texts using templates.
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Mathematical model of the WSRP

Mathematical model of the WSRP

Instance data:

E = {1, . . . , n} set of mobile employees,
each employee i characterized by:

- a skill level skei ∈ N;
- a working time-window [lbei , ubei] ⊂ J0,1440K ⊂ N;
- a location.

T = {1, . . . , m} set of tasks,
each task j characterized by:

- a minimum required skill level sktj ∈ N;
- an availability time-window [lbtj , ubtj] ⊂ J0,1440K ⊂ N;
- a performing duration dtj ∈ N;
- a location.

Travel duration between two locations trjk with (j , k) ∈ T 2.
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Mathematical model of the WSRP

Mathematical model of the WSRP

Bi-objective Integer Linear Program (ILP) model:

lex max (total working duration, −total traveling duration)

s.t. - flow constraints
- skill constraints
- occurence constraints
- tasks availability constraints
- employees working hours constraints
- sequencing constraints

Uijk ∈ {0,1} whether or not i goes from j to k, ∀i ∈ E , ∀(j , k) ∈ T 2

Tj ∈ N start time of j , ∀j ∈ T
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- sequencing constraints

Uijk ∈ {0,1} whether or not i goes from j to k, ∀i ∈ E , ∀(j , k) ∈ T 2

Tj ∈ N start time of j , ∀j ∈ T
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Mathematical model of the WSRP

Sequencing constraints:
∀ (j , k) ∈ T 2, j ≠ k,

Tj + dtj
´¸¶

duration
of j

+ ∑
i∈E

Uijk trjk
´¸¶
travel

duration
j→k

≤ Tk + (1 −∑
i∈E

Uijk) ubtj
´¸¶
upper
bound

of j

↪ If there is an employee performing j then k,

Tj + dtj + 1 × trjk ≤ Tk + 0 × ubtj

↪ Otherwise,
Tj + dtj + 0 × trjk ≤ Tk + 1 × ubtj
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Generating counterfactual explanations

Explanations requested through questions

List of end-user questions:
We propose 16 template questions about various topics:

- inserting a task in an employee’s route
e.g. “How to make ⟨employee i∗⟩ perform ⟨task j∗⟩ in
addition to the tasks of their route?”;

- swapping two tasks outside / inside a route;
- changing the order of tasks in a route.

We selected these questions as they satisfy some assumptions:
- they focus on one solution;
- they mention a “desideratum”;
- they ask for counterfactual explanations (“how to ...”).
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Generating counterfactual explanations

Reminder | Our use case - (3) Non-expert end-user

A problematic situation for a planner:
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“How to make Ellen
perform task 15 in addition
to the tasks of her route?”

↪ If no explanations, then black box feeling...
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Generating counterfactual explanations

From questions to mathematical programming

General principle:
Each question q is mapped to a multi-obj. ILP model which:

aims at finding how to alter the instance parameters s.t.:
1. we obtain a solution satisfying the desideratum;
2. we minimize the alterations (magnitude and number);
3. we optimize the solution quality.

is based on the WSRP model with adaptations:
- focus on only one employee’s route;
- new decision variables, changes in constraints, changes in the
objective functions, etc.
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Generating counterfactual explanations

From questions to mathematical programming

Multi-objective ILP model on an example of question:
Let q be a question based on “How to make ⟨employee i∗⟩ perform
⟨task j∗⟩ in addition to the tasks of their route?”
Some preliminary remarks:

We can work with a reduced set of tasks
T ∗ = {j performed by i∗ in solution} ∪ {j∗}.
We assume that the user wants to alter only task time
parameters (dtj , lbtj , ubtj) within some acceptable ranges.
We introduce new decision variables including:

- ∆DTj , decrease of dtj , for all j ∈ T ∗;
- ∆Tmax , greatest value of time alterations;
- Tj∗ split in two and replaced by T lb

j∗ and T ub
j∗ :

earliest start time of j∗ when satisfying time constraints before,
latest start time of j∗ when satisfying time constraints after.
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From questions to mathematical programming

Multi-objective ILP model on an example of question:

lex min (T lb
j∗ −T ub

j∗ , ∑
j∈T ∗

∆DTj , ∆Tmax , nb of alterations,

total traveling duration)

s.t. - adjusted flow constraints
- adjusted occurence constraints
- adjusted tasks availability constraints
- adjusted working hours constraints
- adjusted sequencing constraints
- constraints on altering variables like ∆DTj

Ui∗jk ∈ {0,1} whether or not i∗ goes from j to k, ∀ (j , k) ∈ (T ∗)2

Tj ∈ N start time of j ∀ j ∈ T ∗
T ub

j∗ , T lb
j∗ ∈ N bounds on the start time of j∗

∆DTj ∈ N decrease of the duration of j ∀ j ∈ T ∗
...

∆Tmax ∈ N greatest value of time alterations

Mathieu Lerouge ICORES 2023 19 February 2023 18 / 24



Generating counterfactual explanations

From questions to mathematical programming

Multi-objective ILP model on an example of question:

lex min (T lb
j∗ −T ub

j∗ , ∑
j∈T ∗

∆DTj , ∆Tmax , nb of alterations,

total traveling duration)

s.t. - adjusted flow constraints
- adjusted occurence constraints
- adjusted tasks availability constraints
- adjusted working hours constraints
- adjusted sequencing constraints
- constraints on altering variables like ∆DTj

Ui∗jk ∈ {0,1} whether or not i∗ goes from j to k, ∀ (j , k) ∈ (T ∗)2

Tj ∈ N start time of j ∀ j ∈ T ∗
T ub

j∗ , T lb
j∗ ∈ N bounds on the start time of j∗

∆DTj ∈ N decrease of the duration of j ∀ j ∈ T ∗
...

∆Tmax ∈ N greatest value of time alterations

Mathieu Lerouge ICORES 2023 19 February 2023 18 / 24



Generating counterfactual explanations

From questions to mathematical programming

Multi-objective ILP model on an example of question:

lex min (T lb
j∗ −T ub

j∗ , ∑
j∈T ∗

∆DTj , ∆Tmax , nb of alterations,

total traveling duration)

s.t. - adjusted flow constraints
- adjusted occurence constraints
- adjusted tasks availability constraints
- adjusted working hours constraints
- adjusted sequencing constraints
- constraints on altering variables like ∆DTj

Ui∗jk ∈ {0,1} whether or not i∗ goes from j to k, ∀ (j , k) ∈ (T ∗)2

Tj ∈ N start time of j ∀ j ∈ T ∗
T ub

j∗ , T lb
j∗ ∈ N bounds on the start time of j∗

∆DTj ∈ N decrease of the duration of j ∀ j ∈ T ∗
...

∆Tmax ∈ N greatest value of time alterations

Mathieu Lerouge ICORES 2023 19 February 2023 18 / 24



Generating counterfactual explanations

From questions to mathematical programming

Multi-objective ILP model on an example of question:

lex min (T lb
j∗ −T ub

j∗ , ∑
j∈T ∗

∆DTj , ∆Tmax , nb of alterations,

total traveling duration)

s.t. - adjusted flow constraints
- adjusted occurence constraints
- adjusted tasks availability constraints
- adjusted working hours constraints
- adjusted sequencing constraints
- constraints on altering variables like ∆DTj

Ui∗jk ∈ {0,1} whether or not i∗ goes from j to k, ∀ (j , k) ∈ (T ∗)2

Tj ∈ N start time of j ∀ j ∈ T ∗
T ub

j∗ , T lb
j∗ ∈ N bounds on the start time of j∗

∆DTj ∈ N decrease of the duration of j ∀ j ∈ T ∗
...

∆Tmax ∈ N greatest value of time alterations
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Generating counterfactual explanations

Reminder | Mathematical model of the WSRP

Sequencing constraints:
∀ (j , k) ∈ T 2, j ≠ k,

Tj + dtj
´¸¶

duration
of j

+ ∑
i∈E

Uijk trjk
´¸¶
travel

duration
j→k

≤ Tk + (1 −∑
i∈E

Uijk) ubtj
´¸¶
upper
bound

of j

↪ If there is an employee performing j then k,

Tj + dtj + 1 × trjk ≤ Tk + 0 × ubtj

↪ Otherwise,
Tj + dtj + 0 × trjk ≤ Tk + 1 × ubtj



Generating counterfactual explanations

From questions to mathematical programming

Sequencing constraints with altering variables:
3 groups of constraints instead of 1:

∀ (j , k) ∈ (T ∗ ∖ {j∗})2, j ≠ k,

Tj + dtj − ∆DTj + Ui∗jk trjk ≤ Tk + (1 −Ui∗jk)ubtj

∀ k ∈ T ∗ ∖ {j∗},

T ub
j∗ + dtj∗ − ∆DTj∗ + Ui∗j∗k trj∗k ≤ Tk + (1 −Ui∗j∗k)ubtj∗

∀ j ∈ T ∗ ∖ {j∗},

Tj + dtj − ∆DTj + Ui∗jj∗ trjj∗ ≤ T lb
j∗ + (1 −Ui∗jj∗)ubtj
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Generating counterfactual explanations

From mathematical programming to explanations

3 cases of explanations:
Assume that the multi-objective ILP model has been solved.
1. T lb

j∗ −T ub
j∗ = 0 and ∆Tmax > 0

↪ The desideratum is obtained thanks to alterations.

2. T lb
j∗ −T ub

j∗ = 0 and ∆Tmax = 0
↪ The desideratum is obtained without any alterations.

3. T lb
j∗ −T ub

j∗ > 0
↪ Alterations ranges are not enough to get the desideratum.
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Generating counterfactual explanations

From mathematical programming to explanations

Explanation text in case 1.:
“By ⟨applying the alterations of the instance parameters given by
positive values of altering variables like ∆DTj⟩,
⟨the desideratum⟩ would be possible;
in this case, the solution would be ⟨the one deduced from the ILP
optimal result⟩.”
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Generating counterfactual explanations

Reminder | Our use case - (3) Non-expert end-user

A problematic situation for a planner:
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“How to make Ellen
perform task 15 in addition
to the tasks of her route?”

↪ If no explanations, then black box feeling...
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Generating counterfactual explanations

From mathematical programming to explanations

Explanation text in case 1.:
“By changing the opening time of task 17 to 12:29PM (instead of
12:30PM in the current input data),
⟨the desideratum⟩ would be possible;
in this case, the solution would be ⟨the one deduced from the ILP
optimal result⟩.”
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Generating counterfactual explanations

From mathematical programming to explanations

Explanation text in case 1.:
“By changing the opening time of task 17 to 12:29PM (instead of
12:30PM in the current input data),
making Ellen perform the task 15 in addition to her already-
performed tasks would be possible,
in this case, the solution would be ⟨the one deduced from the ILP
optimal result⟩.”
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Generating counterfactual explanations

From mathematical programming to explanations

Explanation text in case 1.:
“By changing the opening time of task 17 to 12:29PM (instead of
12:30PM in the current input data),
making Ellen perform the task 15 in addition to her already-
performed tasks would be possible,
in this case, the solution would be the one obtained by changing
Ellen’s sequence of performed tasks to [30, 7, 8, 1, 17, 15, 26, 3].”

Mathieu Lerouge ICORES 2023 19 February 2023 21 / 24
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Conclusion

Achieved work in this article:
Approach for generating counterfactual explanations that:

- is thought for an end-user of a system solving a WSRP;
- starts from user questions about various desiderata;
- is based on mathematical programming;
- ends on explanations given as texts.

Related work:
Approach for generating contrastive explanations:

[Lerouge et al., 2022] Explaining solutions stemming from
optimization systems solving the Workforce Scheduling and
Routing Problem to their end-users (Working paper).
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Conclusion

Conclusion

Work in progress:

Perform an exhaustive study for assessing computational
efficiency.
Evaluate how explanations influence end-users’ trust.
Design an explanation system handling various types of
explanations (contrastive, scenario and counterfactual).

Perspectives:
How much generic is our approach? Can we transpose it to other
optimization problems?
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Thank you for your attention!
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