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Abstract

In the last decade, explainability has been attracting much attention in the machine learning community.
However, this research topic extends beyond this field to encompass others such as operations research and
combinatorial optimization (CO). This paper addresses this issue in the case of the workforce scheduling and
routing problem (WSRP), a CO problem involving human resource allocation and routing decisions. We first
introduce a novel mathematical framework that models the process of explaining solutions to the end-users
of a WSRP-solving system. Then, we present original algorithmic methods to generate explanation texts
employing a high-level vocabulary adapted to such end-users. Explanations are user-centered, local, and
contrastive. They are triggered by end-user questions about various topics regarding a solution of a WSRP
instance. Both questions and explanations are expressed as texts thanks to templates. Numerical experiments
show that the algorithms generating explanation texts have execution times that are mostly compatible with
the online use of explanations in an interactive system.

Keywords: combinatorial optimization; artificial intelligence; workforce scheduling and routing problem; user-centered
explanations; contrastive explanations

1. Introduction

Nowadays, decision-aid tools based on combinatorial optimization (CO) are used in many profes-
sional contexts. For instance, organizations may use them in order to be more efficient at managing
their resources and planning their future activities. However, most often, the decision-makers who
use these optimization-based tools do not have the necessary background to fully understand their
mathematical concepts and algorithmic principles; and even if they do, they may be surprised
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by some aspects of the decisions proposed by the systems and thus have some doubts about the
relevance of these decisions. In both cases, given the lack of understanding, decision-makers may
lose trust in their optimization systems and feel reluctant to apply the decisions proposed by these
systems. One way to tackle these issues is to provide explanations to the decision-makers. Such an
approach falls under the wide field of eXplainable artificial intelligence (XAI) (Gunning and Aha,
2019).

Over the last decade, explainability has been attracting much attention in the artificial intel-
ligence (AI) community, especially in the machine learning one (Barredo Arrieta et al., 2020).
This strong interest has been triggered among others by the XAI research program funded by
the Defense Advanced Research Projects Agency (DARPA, 2016) in the United States and by
the recent introduction of the General Data Protection Regulations (GDPR, 2016) and Artificial
Intelligence Act (AIA, 2021) in Europe. The GDPR gives individuals the right to obtain explana-
tions about how a decision affecting their life and made automatically by an algorithm has been
reached. Independently of the AI field they relate to, most works dealing with explanation have
similar goals, namely algorithmic transparency, user trust, and bias mitigation (Mohseni et al.,
2021). Besides, they often rely on the same fundamental concepts coming from social sciences
and philosophy such as the notions of contrastive questions (Lipton, 1990) or counterfactual
explanations (Lewis, 1973). Works on explanations from different fields may thus inspire each
other. However, the differences between these fields (in terms of problems, use cases, models,
inputs, algorithms, etc.) make it difficult to directly transpose an explanation method developed for
a given field to another one. For instance, methods generating explanations as saliency heatmaps
(a.k.a. sensitivity maps) in deep learning (Simonyan et al., 2014; Zeiler and Fergus, 2014) cannot
be easily converted into some equivalent methods that may be used in operations research (OR)
contexts and more specifically in CO contexts. Thus, in order to provide explanations to decision-
makers using optimization systems, explanation methods specifically designed for CO contexts are
needed.

Yet, to the best of our knowledge, there are only a few works dealing with
explanations for CO problems (see Ludwig et al., 2018; Čyras et al., 2019;
Korikov et al., 2021; Lerouge et al., 2023). The first three papers rely on strong assumptions that
limit the applicability of their methods to other CO problems and aim to provide explanations for
only a few specific matters of solutions. Focusing on a scheduling problem, Ludwig et al. (2018) seek
to provide explanations about the timing of the tasks, that is, explaining why a given task is sched-
uled at a given time in the solution. However, their explanations tightly depend on the heuristic
approach used to solve the problem, making their approach specific to their CO problem and solv-
ing heuristic. It also supposes that people receiving their explanations are familiar with the heuristic
and agree to solve their instances with this sub-optimal algorithm. Čyras et al. (2019) also consider
a scheduling problem but propose an explanation method based on abstract argumentation (Dung,
1995) to explain three matters about solutions: feasibility, local optimality, or satisfaction of a fixed
user decision. However, this method seems to be applicable only to a specific class of integer linear
programs: programs that can be fully formulated with binary variables which are all involved in
clique constraints. Finally, Korikov et al. (2021) focus on another specific class of integer linear
programs. Their approach prescribes each explanation to be based on the change of a single input
parameter that must be involved in the objective function but not in the constraints, further limiting
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the applicability of the approach to other CO problems and the variety of explainable matters.
In contrast, Lerouge et al. (2023) may offer a more extendable approach that could be applied to
various CO problems beyond the studied scheduling and routing problem. Their approach enables
end-users to ask about 15 different questions and receive counterfactual explanations in return. A
key strength in favor of the generalization capability of the approach is its relation to neighbor-
hoods, a concept rooted in local search and widely used to solve many CO problems. However, the
presented approach lacks of a clear and problem-independent explanation modeling framework
to support its potential for generalization. Additionally, while counterfactual explanations are
one way to explain results to end-users, other methods, such as contrastive explanations, also
exist.

Thus, the development of explanation approaches for CO problems keeps raising several chal-
lenging open research issues: How can explanations, in particular contrastive explanations, be
defined and modeled in a CO context? How can they be efficiently computed? How can they be
effectively communicated to their intended audience? etc. This work is an attempt to addressing
these research issues.

Contributions. In this work, we design an original mathematical framework to model the
process of giving contrastive explanations about solutions to a CO problem for the end-users of
an optimization system. In our approach, end-users trigger explanations by formulating ques-
tions based on a template chosen within a predefined bank of questions which satisfy certain
assumptions. These questions are interpreted in CO terms and induce mathematical programs. The
explanations answering to these questions are then mathematically defined based on the feasibility
of the induced programs. Finally, algorithms, which are sought to be executable in a reasonable time
(a few seconds), are used for generating explanation texts by relying on template texts. Throughout
this work, we apply our method to the same use case as in Lerouge et al. (2023) in which end-users
use optimization systems for solving instances of a workforce scheduling and routing problem
(WSRP).

Use case. The WSRP involves assigning geographically dispersed tasks to mobile employees
and building a route and a schedule for each employee. Figure 1 presents a solution obtained
with an optimization system. Each employee is related to a color, for example, the color red
for Ellen (El in the figure). The graph on the left represents routes: colored dots correspond
to tasks performed by employees and gray ones to nonperformed tasks, while squares corre-
spond to employee starting locations. The Gantt chart on the right depicts schedules: numbered
and colored rectangles represent tasks; gray ones represent employee traveling times to go from
one task to another; for both groups, the width of a rectangle matches the duration of what it
represents.

Focusing on the WSRP has been originally motivated by the needs of our industrial partner
DecisionBrain, a French company which develops and sells optimization software products,
among which is a decision-aid tool for solving variants of the WSRP. DecisionBrain often re-
ceives from its clients questions about the solutions generated by this tool, for example, “Why
is Ellen not performing task 27 just after task 17?” after noticing that Ellen passes close to
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Fig. 1. Representation of routes (left) and schedules (right) of a solution of a WSRP instance.

task 27 between tasks 17 and 8. Answering such questions is time-consuming as it supposes
to (1) get familiar with the WSRP instance and solution and (2) find explanatory content
to provide to the clients. For these reasons, the automatic generation of explanations in re-
sponse to clients’ questions would be very convenient and useful for both the clients and the
company.

More broadly, the WSRP arises in many and various contexts. Lots of applications can be found
in the literature: see, for example, Mosquera et al. (2019) for home care services and Chen et al.
(2016) for heating, ventilation, and air-conditioning home services. The WSRP is an NP-hard
problem as it is a generalization of both vehicle routing and scheduling problems which are NP-
hard (Volte et al., 2019). Therefore, decision-makers using an optimization system to solve large
instances of the WSRP may feel overwhelmed by the high combinatorial aspect of the problem.
Similar to DecisionBrain’s clients, they are likely to have difficulties in appreciating why the gener-
ated solutions are good ones and, consequently, to feel the need to obtain explanations about these
solutions.

Structure of the paper. The remainder of the paper is organized as follows. Section 2 provides
an overview of the related literature. It discusses works dealing with explanations in OR, and more
broadly in AI, and clarifies where our work stands relative to this literature. Section 3 formally
defines the WSRP and provides an integer linear programming (ILP) formulation for this problem.
Section 4 presents our mathematical framework modeling the process of explaining solutions to the
end-users of WSRP-solving systems. Section 5 describes our algorithmic techniques for computing
and narrating explanations, followed by an analysis of the performance of these techniques on large-
scale instances and solutions. Finally, conclusions and future works are synthesized in Section 6.
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2. Related works

In this section, we first review the literature on explanations in AI by detailing key characteristics
of explanation. We then focus on how explanations have been addressed specifically in OR. Finally,
we position our work in relation to this literature.

2.1. Design key characteristics of explanations in AI

The concept of explanation in AI may be described according to several key characteristics includ-
ing target audience, scope, type, trigger, and form. In the following paragraphs, we discuss these
characteristics in a cross-disciplinary way, by referring to works from various AI fields, namely
expert systems (ES), AI planning (AIP), machine learning, and constraint satisfaction problems
(CSP).

Target audience. With the aim of explaining the results or the functioning of an AI system, it
is essential to determine the target audience, as the appropriate content and form as well as the
intended goals of the explanations that are presented to them may depend on it (Barredo Arrieta
et al., 2020; Mohseni et al., 2021). Whatever the considered AI field, the literature generally iden-
tifies three target audiences: in ES (Wick and Thompson, 1992), the end-user of an expert system,
the domain expert who is involved in the acquisition of the expert system, and the knowledge engi-
neer who designs the expert system; in AIP (Chakraborti et al., 2020), the end-user who interacts
with the AIP system, the domain designer, and the algorithm designer—the two latter ones being
the AIP twins of the ES domain expert and knowledge engineer; in machine learning (Mohseni
et al., 2021), the AI novice, the data expert, and the AI expert. In our work, we assume that the
target audience is an end-user of a WSRP-solving system who may not have any expertise in opti-
mization. This audience is analogous to the end-user in ES and AIP or the AI novice in machine
learning. In DecisionBrain’s context, such an audience corresponds, within their clients’ organi-
zations, to the planners, that is, people in charge of designing human resources’ plannings us-
ing the optimization tool as well as the employees affected by the decisions of the planners who
may question them. Thus, we seek to adapt the explanations generated by our methods to this
audience.

Scope of explanations. Explanations can be classified by their scope, also known as focus (Wick
and Thompson, 1992) or interpretation scale (Mohseni et al., 2021). The XAI community gener-
ally identifies two scopes of explanations, namely local and global scopes. Originally, in the context
of ES, Wick and Thompson (1992) partition explanations into two categories. The first is made
of process-related explanations, which involve information on how the system works and generally
address “how” questions. The second is made of solution-related explanations, which involve infor-
mation about the solutions themselves and usually consist of arguments supporting them. In more
recent XAI works (Doshi-Velez and Kim, 2017; Guidotti et al., 2018; Liao et al., 2020; Mohseni
et al., 2021), the first category is rather referred to as global explanations and the second one as local
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explanations. As noted by Mohseni et al. (2021), local explanations better suit AI novices as they
are less overwhelming. Since end-users are the target audience in our work, we design local explana-
tions: our explanations focus on solutions and aim at describing causes justifying some intriguing
matters observed in them.

Explanations can always be seen as answers to some questions, even though these questions
are not always made explicit. Thus, many works on explanations commonly name explanation
types based on characteristics of their corresponding questions or vice versa. Especially, works
like Mohseni et al. (2021) name explanation types based on the interrogative forms of their
corresponding questions: “how,” “why,” “why-not,” “what-if,” “how-to,” and “what-else.” This
categorization is not completely rigorous, since a given explanation type may be suitable for
answering questions corresponding to different interrogative forms as noted by Liao et al. (2020).
However, it is a convenient and intuitive way to name, compare, and delineate different explanation
types. For this reason, we use such a categorization.

Explanation types. As previously mentioned, there are many interrogative forms for the ques-
tions to be answered and consequently many explanation types. Among them, two types are widely
used in the XAI literature: “why-not” / contrastive explanations and “how-to” / counterfactual ex-
planations. (See Stepin et al., 2021, for a comprehensive survey of contrastive and counterfactual
explanations in XAI.)

• Contrastive/“why-not” explanations. Lipton (1990) defines a contrastive question as a question
having the following form: “Why this observation rather than that one” or equivalently “why
not that other observation instead of this one?”—this second version makes the “why-not” name
evident. “This observation”/“this one” is called the fact and refers to a detail, a property, that
can be observed in the result. “That one”/“that other observation” is the foil and refers to a
hypothetical other aspect that the person who is asking the question would have expected to
observe instead. Besides, the foil of the question may sometimes be implicit, especially when the
fact is a negation. In this case, the contrastive question becomes simply: “Why is this fact?” As
noted by Miller (2019), some authors refer to the foil as the counterfactual case which makes sense
as it is literally a counter-fact, that is, an alternative to the fact observed in the output. However,
naming the foil this way may be misleading as the term “counterfactual” is also used to name
a hypothetical alternative input in counterfactual explanations (see the next bullet point). For
this reason, in this work, we adopt the term foil. Explanations answering contrastive questions
are usually called contrastive explanations. Miller (2019, 2021) claims that most of the questions
asked by people starting with “why” are contrastive, that such questions are usually asked when
a surprising or abnormal fact is observed and that contrastive explanations are simpler to deal
with for both the questioner and the explainer. Reflecting Miller’s position, several works in XAI
aim at providing contrastive explanations, whether in AIP (Sreedharan et al., 2018; Cashmore
et al., 2019; Lindsay, 2020) or in OR (Čyras et al., 2019; Korikov et al., 2021).

• Counterfactual/“how-to” explanations. Consider an input and its corresponding output obtained
using an AI system. A counterfactual explanation presents a hypothetical alternative input that
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would have resulted in a different output such as a user-specified output (Wachter et al., 2018;
Mohseni et al., 2021). An explicit way to ask for such counterfactual explanations is to use
questions starting with “how to” (e.g., ‘How to obtain this other output?’’) (Lerouge et al.,
2023)—which is the reason why counterfactual explanations are also termed “how-to” expla-
nations. However, counterfactual explanations can also be used for answering contrastive/“why-
not” questions of the form “why is this fact and not this foil?” In this case, the counterfactual
explanation corresponds to exhibiting a change in the input that would turn the fact mentioned
in the question into the foil (Korikov et al., 2021).

This work focuses on providing contrastive explanations.

Trigger of explanations. Many works in XAI concentrate their efforts on modeling, com-
puting, or presenting explanations regardless of any interactions with the target audience and
thus do not discuss how explanations are triggered: see, for example, Korikov et al. (2021).
Other works take into account interactions with the target audience and specify ways to trigger
explanations. For instance, Ludwig et al. (2018) and Čyras et al. (2020) allow the audience to
apply actions on a graphic user interface (e.g., clicks or drag-and-drops) and assume that these
actions implicitly correspond to asking questions about the output. However, such a way to
trigger explanations is only possible when there is a limited number of matters that the audi-
ence wants to question. In order to allow the end-user to ask a wider range of questions and
to obtain explanations on many aspects of the output, it is necessary to consider questions
explicitly formulated as texts, as done in Swartout and Smoliar (1987), Chandrasekaran et al.
(1989), Cashmore et al. (2019) and Lindsay (2020). In our work, we choose to trigger explana-
tions with end-user questions, which allows us to generate explanations on many aspects of the
solution.

Form of explanations. There are various ways to present the explanations to the audience
(Mohseni et al., 2021). One can resort to visual explanations by depicting their explanatory content
using visual elements like images, graphs, etc. For instance, in deep learning, some works, for ex-
ample, Zeiler and Fergus (2014) and Simonyan et al. (2014), use a saliency heatmap to emphasize
important features in the input image; in AIP, Krarup et al. (2022) use color to highlight differences
between the initial solution and the one computed as part of the explanation. One can also resort
to textual explanations, which express their explanatory content using words or phrases. A possible
approach is then to use template texts and fill them in with computed data (Sqalli and Freuder,
1996; Ludwig et al., 2018). Another approach is to use natural language generation techniques
to automate the verbalization of explanations (Forrest et al., 2018; Poli et al., 2021). This paper
deals with textual explanations that are expressed based on template texts and does not consider
visual explanations.

In the previous paragraphs, we discussed key characteristics of explanation methods in the broad
field of AI. In Subsection 2.2, we study how the notion of explanation has been addressed specifi-
cally in OR.
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2.2. Explanations in OR contexts

We first examine papers dealing with explanations in CSP. We then review works seeking to provide
explanations for CO problems, which is the application context of this work.

Explanations in CSP. There are several works on explanations in the field of CSP. In most of
them, for example, de Kleer (1986), Ginsberg (1993), Junker (2004), and Cambazard and Jussien
(2006), the term explanation (or equivalently no good, removal explanation, conflict set) is used
to name a subset of constraints that mathematically justifies either the infeasibility of the CSP in-
stance or, within the solving process, the current state of the variables domains. Some works, for
example, Junker (2004), look for the minimal conflict sets; others, for example, de Kleer (1986),
Ginsberg (1993), and Cambazard and Jussien (2006), exploit such sets in order to help the solv-
ing process. The corresponding explanations are expressed in mathematical terms and may there-
fore be useful exclusively for the CSP algorithms designers. Actually, few works consider provid-
ing explanations to nonexpert end-users; hence, few works consider expressing explanations in a
way that is adapted to this audience. Among them, Sqalli and Freuder (1996) and Bogaerts et al.
(2021) focus, for instance, on explaining how to solve, step by step, the given CSP instance us-
ing verbal or visual elements while Jussien and Ouis (2001) seek to explain infeasibility by nam-
ing conflict sets of constraints. In any case, in these works, there is a single matter to explain
to the audience: the feasibility/infeasibility of the instance. However, in our context, the end-
user is assumed to have at hand a feasible solution and to look for explanations about other
matters, for example, “Why is the workforce member Ellen not performing this electricity task
while her route goes next to it?” or “Why is Fabian not performing this plumbing task in the
morning as his schedule is partially empty?” Consequently, rather than looking for explaining
why an instance is feasible, we are interested in explaining why a solution is more relevant than
others.

Explanations in CO contexts. Besides these works dealing with explanations in CSP, there are
some other OR-related works on user-centered explanations, for example, Ludwig et al. (2018),
Čyras et al. (2019), Korikov et al. (2021), and Lerouge et al. (2023). Ludwig et al. (2018) focus on a
specific heuristic scheduling system that is based on a greedy algorithm and present a facility that
is able to provide to end-users of this system a verbal explanation of the question: “How has this
task been scheduled at this time in the returned schedule?” The explanation, which is triggered by
clicking on the task of interest on an interface, takes the form of a list of sentences detailing the
reasoning steps that have driven the system to schedule the task at a given time. In other words,
the explanation consists of describing part of the system execution on an instance, which supposes
that end-users understand and agree that the scheduling problem is solved according to the heuris-
tic approach of the system and not another one. In our context, we want the explanations to be
independent from the WSRP-solving approach because its functioning is not greedy; therefore,
the algorithmic steps may be too technical and overwhelming for end-users and are likely to be
updated over time. Čyras et al. (2019) study a minimum makespan scheduling problem. They de-
fine a method for explaining why a given schedule is (not) feasible, (not) locally optimal, or (not)
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satisfying fixed user decisions, by extracting information from abstract argumentation frameworks
(Dung, 1995). However, these argumentation frameworks rely on the implicit assumption that the
problem can be formulated as a mathematical program involving exclusively binary variables and
that all these variables are involved in clique constraints. This assumption prevents us from ap-
plying their method to the WSRP since it is formulated as an integer linear program as it will be
presented in Subsection 3.2. Korikov et al. (2021) describe a method based on inverse optimization
for producing counterfactual explanations. Each explanation is assumed to be based on the change
of a single instance parameter, which must be involved only in the objective function and not in
the constraints. This assumption limits the application of their method. Especially, in the case of
the WSRP, all the parameters involved in the objective function are also involved in the constraints
as it will be presented in Subsection 3.2. Therefore, all these three works have certain limitations
making it difficult to apply their methods to our WSRP context and more generally to other OR
contexts. In contrast, in a recent work, Lerouge et al. (2023) develop an approach that enables end-
users to ask various “how-to” questions about WSRP solutions (e.g., “How to make Ellen perform
task 15 in addition to her already-performed tasks?”) and receive counterfactual explanations in re-
turn (e.g., “By changing the opening time of task 17, from its value 12:30 p.m. in the current input
data, to 12:29 p.m. instead, making Ellen perform the task 15 in addition to her already-performed
tasks would be possible”). Their approach relies on defining and solving an integer linear program,
which simultaneously explores a question-dependent subset of the WSRP solution space and al-
ters the instance parameters within user-fixed ranges, to identify the information needed to answer
the question asked by the end-users (e.g., changing the opening time of task 17 from 12:30 p.m. to
12:29 p.m.). However, this integer linear program involves a large number of decision variables used
for adjusting the instance parameter alterations, making it potentially difficult to obtain an expla-
nation in a reasonable time (a few seconds). On the other hand, contrastive explanations, which
do not require presenting a hypothetical alternate instance, offer an interesting and possibly more
efficient alternative to counterfactual explanations. In addition, the presented approach in Lerouge
et al. (2023) introduces some key concepts, such as neighboring solutions or closest feasibility, but
lacks of formalization to support its potential for generalization. Thus, in this paper, we aim to pro-
vide a more rigorous and problem-independent modeling framework for contrastive explanations.

2.3. Our positioning in this work

We conclude this section by positioning our work relatively to the examined literature. First, we
identify three main audiences for the explanations in an OR context: the end-users of an optimiza-
tion system, the business analysts, that is, people in charge of acquiring this system who define its
specifications, and the algorithm designers specialized in optimization. Among them, we primarily
target the end-users of an optimization system solving a WSRP. However, the explanations gener-
ated by our method may also be helpful for business analysts and algorithm designers. Then, we
deal with explanations that are local by focusing on a given solution of a WSRP instance, con-
trastive by answering to question like “why this fact instead of this foil?” and verbal by taking
the form of texts built from templates. Finally, we assume that explanations are triggered by ques-
tions, also formulated using template texts, which allows us to study various end-user matters about
their solutions.
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10 M. Lerouge et al. / Intl. Trans. in Op. Res. 0 (2024) 1–34

3. Workforce scheduling and routing problem

This section focuses on the WSRP for which we aim at developing an explanation approach. First,
we give various definitions related to our WSRP use case. Then, we formulate it as a bi-objective
ILP model. It will be exploited later, in Section 4, not for finding optimal solutions, but for defining
explanations about the solutions.

3.1. Definitions

The WSRP can be briefly stated as follows. Given a set of mobile employees and a set of geograph-
ically dispersed tasks, the problem consists of building and assigning to each employee a pair of
route and schedule, which defines the tasks they should perform, in what order and at what times
over a certain horizon. The objective is to design a family of route–schedule pairs of minimum cost,
which accommodates as many tasks as possible while satisfying a set of constraints. For a literature
review of the WSRP, see, for example, Castillo-Salazar et al. (2016).

Instance. In our use case, we consider a scheduling horizon of one day, that is, 1440 minutes.
Times are expressed in minutes from 12:00 a.m. (e.g., 8:00 a.m. ≡ 480). An instance I involves a
set of n mobile employees E = {1, . . . , n} and a set of m tasks T = {1, . . . , m}. Each employee
i ∈ E is characterized by a name, a skill level si ∈ N, a home location, and a working time window
[wi, wi] ⊆ [0, 1440]. Each task j ∈ T is characterized by a required skill level r j ∈ N, a location,
a performing duration d j ∈ N, and an availability time window [a j, a j ] ⊆ [0, 1440]. In addition,
as each employee i departs from their home location at the beginning of their working day and
returns to it at the end of the day, we introduce the notations bi and ei for referring, respectively,
to the departure and return events of i. Observing that tasks, departures, and returns play similar
roles, we introduce the notion of activity j to refer either to a task, a departure, or a return. Then,
for each employee i, we define a personal set of activities Ai = T ∪ {bi, ei}. Finally, assuming that
all employees travel at the same speed, we note t jk ∈ N the travel time needed by any employee to
go from activity j to activity k.

Plannings and solution. Given an instance I, a solution is a family S = ((Ri, Ci))i∈E mapping
each employee i ∈ E to a planning, that is, a route–schedule pair (Ri, Ci). The route Ri is a se-
quence of activities of Ai that begins with bi and ends with ei. It defines the tour done by i. The
schedule Ci is a sequence of start times p j ∈ N that defines when i starts performing each activity
j in Ri. Let p ∈ N be the number of tasks performed by i, then Ri = (bi, j1, j2, . . . , jp, ei) and
Ci = (pbi , p j1, p j2, . . . , p jp, pei )—where we do not indicate that j1, j2, . . . , jp depend on i for
readability purpose.

Throughout this paper, we will often use the solution represented in Fig. 1 as a small il-
lustrative example. Its corresponding instance is detailed in Table B1 of Appendix B, and its
routes and schedules are described in Table A1 in Appendix A. For example, the planning
(R1, C1) of employee 1, named Ellen, is given by R1 = (b1, 7, 30, 3, 26, 1, 17, 8, e1) and
C1 = (485, 525, 567, 662, 720, 840, 900, 1009, 1080).
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M. Lerouge et al. / Intl. Trans. in Op. Res. 0 (2024) 1–34 11

Total working and travel times. Various quantitative criteria can be used to compare solutions.
In our use case, we consider two main criteria: the total working time and the total travel time.
Given a solution S, they are, respectively, noted f p(S ) and f t (S ), and computed as follows:

f p(S ) =
∑

i∈E

∑

j∈T ∩Ri

d j and f t (S ) =
∑

i∈E

∑

j,k∈Ri
consecutive

t jk.

We consider that maximizing the total working time is more important than minimizing the total
traveling time. This allows us to define the following order over the set of solutions. Given two solu-
tions S and S ′, S is considered better than S ′, noted S ≥ S ′, if ( f p(S ), − f t (S )) ≥ ( f p(S ′), − f t (S ′))
with a lexicographic order.

Finally, we end this subsection with the notion of route-equal plannings (or solutions), which will
be used in Section 4 to describe groups of solutions and in Section 5 when computing explanations.

Route-equal plannings and solutions. For a given route Ri, one can build several schedules,
which differ from each other by the starting time values. We say that these plannings are route-
equal. This notion can then be extended to solutions. Two solutions S = ((Ri, Ci))i∈E and S ′ =
((R′

i, C ′
i ))i∈E are said to be route-equal if, for each employee i, the plannings (Ri, Ci) in S and (R′

i, C ′
i )

in S ′ are route-equal.
For example, consider the solution S of the illustrative example represented in

Fig. 1. Let (R′
1, C ′

1) be such that R′
1 = (b1, 7, 30, 3, 26, 1, 17, 8, e1) and C ′

1 =
(541, 581, 620, 715, 768, 873, 925, 1009, 1080). Then, (R′

1, C ′
1) could be another planning for

employee 1, Ellen, that is route-equal to her planning (R1, C1) in S.

3.2. ILP model of our WSRP use case

In this subsection, we provide a formulation of our WSRP use case as a bi-objective ILP model,
which is presented in Model 1. We call it the main model and note it M. We now detail its decision
variables, its objective function, and its constraints.

Decision variables. Two sets of decision variables are used in M. The first set is related to
the temporal dimension of the WSRP. For each task j ∈ T , the integer decision variable Tj de-
fines the time at which j starts to be performed by an employee—if j is performed. The second
set of decision variables is related to the spatial dimension of the WSRP. For each employee
i ∈ E and each pair of activities ( j, k) ∈ (Ai \ {ei}) × (Ai \ {bi, j}), the binary decision variable
Ui jk is equal to 1 if i performs the activity j and then moves to the activity k, and to 0 oth-
erwise. Note that, using such binary variables, we can build quantities expressing whether task
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12 M. Lerouge et al. / Intl. Trans. in Op. Res. 0 (2024) 1–34

j is performed by employee i and whether task j is performed by any employee, respectively, as
follows:

∑

k∈Ai
k 
=bi, j

Ui jk and
∑

i∈E

∑

k∈Ai
k 
=bi, j

Ui jk.

These quantities are involved several times in the objective function and the constraints of M.

Bi-objective function. The objective function (1) of M is a bi-objective one that is maximized
according to a lexicographic order: the first objective equals the total working time, and the second
objective is the opposite of the total travel time.

Constraints. The constraints of M are described below by groups.

• Flow constraints (2)–(4) ensure that each employee starts their working day from their home lo-
cation, goes from activities to others without splitting into multiple directions, and ends their
day at their home location. Note that these constraints alone do not prevent subtours, that is,
loops connecting only tasks, assigned to employees as part of their routes. However, sequencing
constraints defined below will prohibit such subtours.

• Skill constraints (5) ensure that an employee i ∈ E can be assigned to a task j ∈ T only if i has a
skill level si that is higher than r j the minimum one required for performing j.

• Occurrence constraints (6) limit each task j ∈ T to be performed no more than once, that is, to
occur at most once within all employee routes.

• Availability constraints (7) and (8) ensure that, if a task j ∈ T is performed, then it must be started
and ended within its availability time-window [a j, a j ].

• Working hours and sequencing constraints (9)–(11) ensure that if an employee i ∈ E performs two
consecutive activities j ∈ Ai and k ∈ Ai \ { j}, then i must do so within their working time-window
[wi, wi] and i must have enough time to travel from j to k, after ending j and before starting k.
The constraints (9)–(11) correspond, respectively, to the foloptimization system bi and k ∈ T ;
j ∈ T and k ∈ T \ { j}; j ∈ T and k = ei.

We end this subsection by discussing the relations between two ways of characterizing solutions.

Two solution characterizations. In Subsection 3.1, we define a solution S of an instance I as a
family of plannings ((Ri, Ci))i∈E . But, we could also define a solution of I as the result of M, that is,
the assignment of a value to each decision variable involved in M. The first characterization rather
corresponds to an end-user way of representing a solution, while the second to an optimization
system way. In most OR papers, these two characterizations are implicitly equated. However, in
our context, it is important to clearly distinguish between them. Namely, as we aim at generating
explanations about solutions for end-users of an optimization system, we will have to navigate from
the end-user characterization of solutions to the optimization system one and vice versa. Thus, from
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M. Lerouge et al. / Intl. Trans. in Op. Res. 0 (2024) 1–34 13

now on, we call ILP solution an assignment of M decision variables and note it X , while we save
the term solution for naming a family of employee plannings, noted S.

Model 1: Main model M.

Bijection between solution characterizations. Consider instance I and its corresponding M. Pro-
vided that an ILP solution X satisfies flow constraints (2)–(4) and does not involve any subtour, it
can be easily mapped into a solution S. We note ϕ such a mapping, which is a bijection. In short,
given an ILP solution X , one can build a solution S = ϕ(X ) as follows: the routes (Ri)i∈E can be
deduced from the values of spatial binary variables (Ui jk) and the schedules (Ci) from the values of
the temporal variables (Tj ). Conversely, by following the inverse reasoning, one can build an ILP
solution X = ϕ−1(S ) from a solution S.
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14 M. Lerouge et al. / Intl. Trans. in Op. Res. 0 (2024) 1–34

Fig. 2. Overview of the conceptual method developed for explaining a solution S.

We illustrate this mapping with the example of solution S represented in Fig. 1. By applying ϕ−1

on S, we obtain an ILP solution X = ϕ−1(S ). We give below the part of X related to employee 1.

• T7 = 525, T30 = 567, T26 = 720, T1 = 840, T17 = 900, T8 = 1009;
• U1,b1,7 = U1,7,30 = U1,30,3 = U1,3,26 = U1,26,1 = U1,1,17 = U1,17,8 = U1,8,e1 = 1 and U1 jk = 0 for all

other couples of activities ( j, k) ∈ (A1 \ {e1}) × (A1 \ {b1, j}).

Feasible solution and feasible planning. We described above the constraints that an ILP solution
must satisfy to be feasible. Using the bijection ϕ, we can transpose the notion of feasibility from
ILP solutions to solutions. We say that a solution S is feasible if its corresponding ILP solution
X = ϕ(S ) is feasible. We also say that a planning (Ri, Ci) is feasible if it is part of a feasible solution
S.

In this section, we introduced various definitions and notations about our WSRP use case. They
will be used, in the following sections, in order to model and generate explanations about solutions.

4. Framework for modeling the explanation process about WSRP solutions

In this section, we describe our framework for modeling the process of explaining WSRP solutions.
It consists of the sequence of steps depicted in Fig. 2. As represented in the top part of the figure,
from an end-user perspective, our framework involves (A) asking a question q about a solution S
and (E) receiving an explanation in the form of a text. However, as illustrated in the lower part of
the figure, multiple consecutive mathematical steps (B)–(D) lead from the initial question q to the
ultimate explanation. The following subsections are organized as follows. Subsection 4.1 focuses on
step (A). It specifies the nature of the end-user questions handled by our framework and describes
how questions can be formulated by end-users. Subsection 4.2 delves into step (B). It presents how
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M. Lerouge et al. / Intl. Trans. in Op. Res. 0 (2024) 1–34 15

end-user questions formulated in a common language can be interpreted in mathematical terms
involving decision problems. Subsection 4.3 deals with step (C). It especially introduces the concept
of the foil model, which exploits the main model, that is, the ILP formulation of our WSRP use case
introduced in the previous section. Finally, Subsection 4.4 details step (D). It ends this section with
a formal definition of explanations. The generation of explanation texts, which correspond to step
(E), will be developed in Section 5.

Throughout Section 4, we assume that end-users have S, a feasible solution of an instance I, that
they have typically obtained using a WSRP-solving system.

4.1. End-user questions

In this subsection focusing on step (A) in Fig. 2, we specify the nature of the end-user questions
that our approach deals with as well as the way end-users can formulate such questions.

Assumptions about the end-user questions as follows:.

• Scope of explanations. As mentioned in Subsection 2.1, explanations may have local or global
scopes. Our approach deals with local explanations, more precisely explanations focusing on a
WSRP solution like S.

• Type of explanations. Also mentioned in Subsection 2.1, there are various types of explanations
(including contrastive and counterfactual explanations) which can be associated with interroga-
tive forms (respectively, “why-not” and “how-to”). In our approach, we aim at providing explana-
tions to contrastive/“why-not” questions. Such questions involve a fact and a foil, corresponding,
respectively, to a solution feature that end-users observe in S and one that they would have ex-
pected to observe in S (e.g., the fact that a given task is not performed by a given employee and
the foil that the given task may be performed by the given employee). Thus, we do not seek to ex-
plain S but we rather focus on parts of it allowing us to reduce the risks of overloading end-users
with information.

• Neighborhood-related questions. Explaining the observed facts in S by contrasting them with ex-
pected foils amounts to comparing S to other solutions that are close to S. In other words, it
amounts to comparing S with neighboring solutions. Therefore, we require that any end-user
question about S be related to a neighborhood of S, that is, a subset of solutions that can be ob-
tained from S by applying a given transformation (e.g., inserting a given task in a given employee
planning) as defined in the local search optimization terminology. Thus, the end-user questions
can be interpretable as requests for examining neighborhoods of S. Given a question q, we note
N (q) the neighborhood related to q.

To sum up, we design an approach providing explanations in response to neighborhood-related
contrastive questions about a solution. Dealing with such questions can be advantageous for both
end-users and explanations designers: it helps explanation designers to restrict their examination
and propose relevant explanations to end-users in real time.

Although making these assumptions may seem restrictive, the list of end-user questions shows
that our approach is able to address a significant number of questions.
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16 M. Lerouge et al. / Intl. Trans. in Op. Res. 0 (2024) 1–34

Table 1
Nonexhaustive list of question templates.

Label Question template text

(Ins, C) “Why is 〈employee i∗〉 not performing 〈task j∗〉 just after 〈activity k∗〉?”
(Ins, P, a) “Why is 〈employee i∗〉 not performing 〈task j∗〉 between two consecutive

activities of their planning?”
(Ins, P, b) “Why is 〈employee i∗〉 not performing any nonperformed task between two

consecutive activities of their planning?”
(Ins, P, c) “Why is any employee not performing 〈task j∗〉 between two consecutive

activities of their planning?”
(Ins, E) “Why is 〈employee i∗〉 not performing 〈task j∗〉 in addition to the activities of

their planning (even if it means changing the order of the activities in the
planning)?”

(Ex, C) “Why is 〈employee i∗〉 not performing 〈task j∗〉 rather than 〈task k∗〉?”
(Ex, P, a) “Why is 〈employee i∗〉 not performing 〈task j∗〉 rather than any other task of

their planning?”
(Ex, P, b) “Why is 〈employee i∗〉 not performing any nonperformed task rather than

〈task k∗〉?”
(Ex, P, c) “Why is any employee not performing 〈task j∗〉 rather than any other task of

their planning?”
(Ex, E) “Why is 〈employee i∗〉 not performing 〈task j∗〉 rather than any other task of

their planning (even if it means changing the order of the activities in the
planning)?”

(Ord, C, a) “Why is 〈employee i∗〉 not performing 〈task j∗〉 later in their planning, just
after 〈task k∗〉?”

(Ord, C, b) “Why is 〈employee i∗〉 not performing 〈task j∗〉 earlier in their planning, just
before 〈task k∗〉?”

(Ord, P, a) “Why is 〈employee i∗〉 not performing 〈task j∗〉 at a later stage in their
planning?”

(Ord, P, b) “Why is 〈employee i∗〉 not performing 〈task j∗〉 at an earlier stage in their
planning?”

(Ord, P, c) “Why is 〈employee i∗〉 not performing 〈task j∗〉 at any other stage in their
planning?”

(Ord, E) “Why is 〈employee i∗〉 not performing the activities of their planning in a
different order?”

List of end-user question templates. Table 1 is a nonexhaustive list of end-user question tem-
plates that satisfy the above-mentioned assumptions. In order to build this list, we have enumerated
various questions that planners, that is, persons in charge of designing employee plannings us-
ing the WSRP optimization tool, may have. Each question template text of Table 1 has a label.
For example, (Ins, C) template text is “Why is 〈employee i∗〉 not performing 〈task j∗〉 just after
〈activity k∗〉?”

• Each template text contains one or several symbols 〈.〉, indicating fields that end-users have to
specify using data from instance I (an employee name, a task id, etc.). For example, from the
(Ins, C) template, end-users can define the question q = “Why is employee Ellen not performing
task 27 just after task 17?” introduced in Section 1. We annotated with a superscript ∗ the indices
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M. Lerouge et al. / Intl. Trans. in Op. Res. 0 (2024) 1–34 17

of employees, tasks, and activities involved in the fields 〈.〉 in order to differentiate them from
generic indices.

• Each label is a tuple ‘(X, Y, Z)’ such that
- ‘X’ is either ‘Ins’ (insertion), ‘Ex’ (exchange), or ‘Ord’ (reordering). It indicates the kind of

transformation to apply to S in order to obtain the neighboring solutions. For example, for
“Why is employee Ellen not performing task 27 just after task 17?” based on the (Ins, C) tem-
plate, the solutions in N (q) are obtained from S by inserting task 27 between tasks 17 and 8 in
Ellen’s route—and by setting new start times in Ellen’s schedule.

- ‘Y’ is either ‘C’ (constant), ‘P’ (polynomial), or ‘E’ (exponential). Depending on the template
on which a question q is based, the number of groups of route-equal solutions in N (q) may be
constant, polynomial (nonconstant), or exponential in n (number of employees) and m (number
of tasks). For example, for q = “Why is employee Ellen not performing task 27 between two
consecutive tasks of her planning?” based on the (Ins, P, a) template, the solutions in N (q)
are obtained from S by inserting task 27 between a pair of consecutive activities in Ellen’s
route—and by setting new start times in Ellen’s schedule. Therefore, the number of route-equal
solutions in N (q) is polynomial (even linear) in m. In other words, ‘Y’ relates to the size of
N (q). When ‘Y’ is ‘C’ (resp. ‘P’ or “E”), we say that N (q) has a constant size (resp. polynomial
or exponential).

- ‘Z’ is a letter (e.g., ‘a’, ‘b’ or ‘c’) referring to a variant of the transformation whose category is
‘X’ and neighborhood size is ‘Y’; if the pair ‘X’ and ‘Y’ defines a unique transformation, then
there is no letter for ‘Z’ and the label is simply ‘(X, Y)’

Several comments can be made about this list of question templates. First, while the (Ex, P, a)
and (Ex, E) templates may appear similar, there is a nuanced difference between them. In (Ex,
E), as mentioned in parentheses, the order of the activities in the planning of i∗ can be altered
if it helps in inserting j∗. Conversely, in (Ex, P, a), the absence of such mention in parentheses
implies that the order of activities in the planning of i∗ remains unchanged. Then, most of the
neighborhoods associated with the templates of Table 1 apply changes to essentially one employee
planning while leaving the rest of the current solution unchanged. This will be leveraged for the
computation of explanations in Section 5. Finally, it is important to acknowledge that this list
is not exhaustive. For example, “Why is 〈employee i∗〉 not performing 〈task j∗1 〉 and 〈task j∗2 〉 in-
stead of 〈task k∗〉?” is a question satisfying the above-mentioned assumptions which are not part of
Table 1.

In this subsection, we described step (A) of Fig. 2. We specified the nature of the questions ad-
dressed by our framework (local, contrastive, and neighborhood-related questions) and presented
a list of templates allowing end-users to formulate such questions. In the next subsection, we focus
on step (B).

4.2. Decision problems related to end-user questions

From now on, we assume that end-users have a question q about S, based on one of the templates
of Table 1. As q is contrastive, it has the following form “Why is this fact instead of that foil?”
(e.g., “Why is 〈employee i∗〉 not performing 〈task j∗〉 just after 〈activity k∗〉 [instead of the oppo-
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18 M. Lerouge et al. / Intl. Trans. in Op. Res. 0 (2024) 1–34

site]?” where the mention in [] is usually implicit). In order to provide an explanation answering q,
reasons must be found for why, indeed, that foil (“〈employee i∗〉 is performing 〈task j∗〉 just after
〈activity k∗〉”) has not occurred in S instead of this fact (“〈employee i∗〉 is not performing 〈task j∗〉
just after 〈activity k∗〉”). We propose to look for such reasons by using optimization-related con-
cepts such as solution feasibility, optimality, and neighborhoods. However, the text of q does not
explicitly refer to any optimization concept. Thus, in our framework, the first step towards deter-
mining an explanation consists of translating q into a decision problem that is expressed in mathe-
matical terms, related to the field of optimization. This corresponds to step (B) in Fig. 2. We now
define such a decision problem.

Decision problem. We call the decision problem related to q, noted q̂, the following yes-no ques-
tion: “Is there a neighboring solution in N (q) that is feasible and better than S?” q̂ can be seen as
the translation of q into a decision problem using mathematical terms from the field of optimiza-
tion. However, in contrast to q, q̂ explicitly states what we need to find for answering q: we need to
determine whether there exists a neighboring solution S ′ that is feasible and better than the original
solution S. There are two possible outcomes to q̂.

• A negative outcome arises when the answer to q̂ is “no,” that is, when there is no neighboring
solution in N (q) that is feasible and better than S.

• A positive outcome arises when the answer to q̂ is “yes,” that is, when there is at least one neigh-
boring solution S ′ in N (q) that is feasible and better than S.

Note that if S has been obtained using an optimization system, S should be a good solution,
possibly even an optimal one. Therefore, the negative outcome is more likely to happen than the
positive one. Still, since the WSRP is NP-hard, WSRP-solving systems are generally based on ap-
proximate optimization methods, which produce good but suboptimal solutions. In this case, it
may be possible to improve these solutions by applying transformations (e.g., an insertion) such as
the ones implicitly suggested in the end-user questions. Thus, we cannot exclude the possibility of
getting a positive outcome.

Even though q̂ is expressed in mathematical terms, we still need to figure out how to find the
reasons explaining why a negative case occurs. This is the purpose of step (C) in Fig. 2, which
consists of rephrasing q̂ into another question involving an ILP model. The next subsection focuses
on this step.

4.3. Foil models related to end-user questions

Exploiting the fact that the answer to the decision problem q̂ is either “yes” or “no,” that is, a binary
answer, we construct an ILP model, which we refer to as foil model, such that the binary informa-
tion about its feasibility (whether it is feasible or not) relates to the answer to q̂. This corresponds
to step (C) in Fig. 2. We recall that we introduced in Subsection 3.2 a bi-objective ILP model of our
WSRP use case that we called the main model and noted M.
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M. Lerouge et al. / Intl. Trans. in Op. Res. 0 (2024) 1–34 19

Foil model. The foil model related to q, noted Mf (q), is defined as the ILP model obtained by
extending the main model M (cf. Model 1) so that the answer to q̂ matches the one to “Is Mf (q)
feasible?” As shown in Model 2, Mf (q) is obtained from M by keeping the same decision variables,
bi-objective function, and constraints but adding new constraints defined as follows.

• Neighborhood constraints (12) are considered in Mf (q) in order to ensure that its solutions are
neighboring ones, that is, solutions satisfying the foil of q—hence, the name of this model. Ex-
pressing these constraints in terms of decision variables (Tj ) and (Ui jk) depends on the structure
of N (q), that is why we simply write them in short ϕ(X ) ∈ N (q).

• Improvement constraints (13) are considered in Mf (q) to force its solutions to be better than S.

Model 2: Foil model Mf (q) induced by a question q.
Let us illustrate neighborhood constraints as an example. Consider again S represented in Fig. 1,

a feasible solution of an instance I, as well as the question q “Why is Ellen not performing task 27
just after task 17?” Then, neighborhood constraints in Mf (q) are the following:

- For i ∈ E \ {1}, variables (Ui jk), as well as (Tj ) such that j is in Ri, are set to their value in ϕ−1(S ).
- All the variables (U1 jk) are set to their value in ϕ−1(S ) except for U1,17,8 which is set to 0 and for

U1,17,27 and U1,27,8 which are set to 1.

With Mf (q), it is clearer where to find reasons when a negative outcome arises: we should look
for an infeasible subset of constraints making the foil model infeasible. Thus, we can now move on
to step (D) and define the notion of explanation in our context.

4.4. Explanations

In line with the potential positive or negative outcomes of the decision problem, we define
two cases of explanations: negative and positive. To get some intuitions about these categories,
consider that end-users ask a question q about S. A positive explanation ensues when there
exists a neighboring solution S ′ in N (q) that is feasible and better than S. Therefore, a pos-
itive explanation essentially confirms that end-users were right to wonder about the foil of q.
Conversely, a negative explanation arises when none of the neighboring solutions is feasible and
better than S. In essence, a negative explanation basically confirms that S is of good quality
and aims at justifying that. Furthermore, we delineate two subcases of negative explanations:
proof-like and argument-like. The first aims at providing a comprehensive justification by relying
on an infeasible subset of constraints (i.e., a subset of constraints such that the set of solu-
tions satisfying these constraints is empty): it aims at providing a proof. The second seeks to
provide a convincing example to illustrate the negative outcome, not a mathematical proof of
it: it seeks to provide an argument. Subsequently, we provide the definitions for each of these
cases.
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20 M. Lerouge et al. / Intl. Trans. in Op. Res. 0 (2024) 1–34

Proof-like negative explanation. When Mf (q) is infeasible, a proof-like negative explanation
x(q) can be defined as follows:

U is an infeasible subset of constraints of Mf (q) there forenot(∃ S ′ ∈ N (q) feasible, S ′ ≥ S ).

Note that, in this definition, the infeasible subset of constraints U is not required to be inclusion-
wise minimal. Actually, since we ultimately aim at narrating x(q), we are rather interested in finding
a subset that we can describe in a few sentences rather than one that is inclusion-wise minimal.
Besides, in order to find such U , we will not directly solve and assess the feasibility of the foil model,
but rather resort to a polynomial algorithm, when possible. These considerations about computing
and narrating infeasible subsets of constraints will be discussed in Section 5.

Argument-like negative explanation. When Mf (q) is infeasible, an argument-like negative expla-
nation x(q) can be defined as follows:

not(∃ S ′ ∈ N (q) feasible, S ′ ≥ S ). Forexample,S ′ ∈ N (q) but not(feasible and S ′ ≥ S ).

Note that, in this definition, the neighboring solution S ′ that is used as an example is not required
to satisfy some kind of optimality. However, in order to be convincing, we need to find a striking
solution example for S ′. In Section 5, we will discuss how we choose and compute it.

Positive explanation. When Mf (q) is feasible, a positive explanation x(q) is defined as follows:

becauseS was not an optimal solution, the foil of q was not observed in S
however this foil can be observed in S ′ with S ′ feasible and S ′ ≥ S,

where S ′ = ϕ(X ) with X feasible ILP solution of Mf (q).
In this section, we described steps from (A) to (D) in the explanation process depicted in Fig. 2.

These lead from an end-user question q to an explanation x(q). A proof-like negative explanation
is based on an infeasible subset of constraints, while an argument-like negative explanation or
a positive explanation relies on a specific neighboring solution. Two notable remarks emerge.
First, explanations are essentially formulated in mathematical terms, as it is particularly evident
in the case of proof-like negative explanations that rely on infeasible subsets of constraints—a
concept lacking practical meaning for nonexperts. Therefore, these explanations are not suitable
information to communicate to end-users. Second, we have not yet addressed how to compute the
information involved in the explanations, namely the infeasible subsets or the specific neighboring
solutions. Thus, in Section 5, we will describe how explanations can be both computed and
narrated into intelligible texts for end-users.

5. Generating explanation texts

In the previous section, we gave the definition of explanations in mathematical terms. As repre-
sented by step (E) of Fig. 2, given an end-user question q about a solution S, our ultimate goal
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M. Lerouge et al. / Intl. Trans. in Op. Res. 0 (2024) 1–34 21

is to provide an explanation in the form of intelligible text. Besides, we aim at computing such
texts within a time frame that is compatible with an online use of explanations in an interactive
system. In this section, we describe our method for generating explanation texts and conducting
numerical experiments on large-scale instances and solutions to measure its performances in terms
of computation time.

Algorithmic structure. The generation of an explanation text involves three phases.

• Phase 1. Preliminary checks are carried out. They verify, in polynomial time and without the
need to construct any neighboring solution, whether necessary conditions, for N (q) to contain
feasible solutions that are better than S, are met. For example, whenever the transformation
from S to any neighboring solution of N (q) requires one task j∗ to be newly assigned to one
employee i∗, we carry out two preliminary checks: (a) i∗ must be skilled enough to perform j∗;
(b) if j∗ was the unique task assigned to i∗, i∗ must be able to feasibly perform it. If these checks
are successful, the algorithm proceeds to Phase 2 then Phase 3; otherwise, it proceeds directly to
Phase 3.

• Phase 2. This phase explores N (q) to search for a neighboring solution that is both feasible and
better than S or to identify any conflicts preventing the existence of such a solution.

• Phase 3. Based on the results of the two preceding phases, an explanation text is built,
which corresponds either to a proof-like negative, an argument-like negative, or a positive
explanation.

For the sake of brevity, we will not provide additional details about the preliminary checks
of Phase 1. The coming Subsections 5.2 and 5.3 will focus on Phases 2 and 3. However, be-
fore delving into these phases, we dedicate the following Subsection 5.1 to the definition of
the support solution. Intuitively, this solution is the “best” (or “most convincing”) solution in
N (q), upon which a relevant explanation text can be constructed by exploiting its feasibil-
ity/infeasibility and its objective values. This support solution will play a key role in Phases 2
and 3.

5.1. Definition of the support solution

To begin with this subsection, we first provide preliminary comments and introduce several con-
cepts related to solution transformations as prerequisites for defining the support solution.

Consistent task insertion in solution transformations. Let q be a question about a solution S
based on a template ‘(X, Y, Z)’. When ‘X’ is ‘Ins,’ building any solution S ′ in N (q) from S requires,
exactly once, to insert a task in an employee planning (while either maintaining or permuting the
order of tasks within this planning along with the insertion). When ‘X’ is ‘Ex’ or ‘Ord,’ S ′ in N (q)
is obtained from S by removing a task from an employee planning and inserting another task or
the same one in the same planning. Thus, regardless of the template, the operations to build any
S ′ in N (q) from S, consistently involve exactly one task insertion in a planning. In other words,

© 2024 The Author(s).
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13594 by C

ochraneItalia, W
iley O

nline L
ibrary on [10/07/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



22 M. Lerouge et al. / Intl. Trans. in Op. Res. 0 (2024) 1–34

each subset of route-equal solutions of N (q) is associated with a task insertion in a planning. Two
solutions in N (q) may not be obtained by inserting the same task in the same planning; however,
each of them is obtained from S by inserting, exactly once, a task in a planning as part of the
transformation operations.

By definition of our WSRP use case (see Subsections 3.1 and 3.2), removing a task from an
employee planning is always feasible. Therefore, regardless of the template of q, the critical oper-
ation involved in the transformation from S to S ′ in N (q), is this consistent task insertion. In the
subsequent paragraphs, we introduce the concepts of backward-feasible earliest start time, forward-
feasible latest start time, and feasibility gap which we use for evaluating the feasibility/infeasibility
of a task insertion in a planning.

Backward-feasible earliest start time and forward-feasible latest start time. Consider a feasible
planning (Ri, Ci), two consecutive activities (k1, k2) in Ri, and a task j not in Ri. We define the
notions of Backward-feasible Earliest start Time (BET) noted p

j
(resp. Forward-feasible Latest

start Time (FLT) noted pj) of j as follows. Suppose one wants to insert j in Ri between k1 and
k2. p

j
is the earliest time (resp. pj is the latest time) at which i can start performing j such that the

activities before k1 (resp. after k2) can be associated with start times satisfying time constraints (i.e.,
availability, working hours, and sequencing constraints).

Feasibility gap. Inserting a task j between a pair of consecutive activities (k1, k2) of Ri is feasible
if and only if p

j
≤ pj , that is, if and only if max (p

j
− pj, 0) = 0. We call feasibility gap the term

max(p
j
− pj, 0). This term measures the infeasibility of inserting j.

As mentioned earlier, the task insertion in a planning is both a consistent operation and the
critical one involved in the transformation from S to any S ′ in N (q). Therefore, evaluating the fea-
sibility of the transformation amounts to evaluating the feasibility of its inherent task insertion, and
the feasibility gap related to this insertion can be used as a quantity evaluating the (in)feasibility of
the whole transformation. This enables us to define the notions of the nearest-to-feasibility solution
and support solution.

Nearest-to-feasibility solution. For every neighboring solution S ′ in N (q), building S ′ from S
requires to apply an insertion whose feasibility can be evaluated using the feasibility gap. Then,
we say that a neighboring solution in N (q) is a nearest-to-feasibility solution (relatively to I) if it
minimizes the feasibility gap.

Support solution. We define a support solution, noted S�, as a solution in N (q), such that

- if N (q) does not contain any feasible solutions, then S� is a nearest-to-feasibility solution in N (q);
- else, S� is the best feasible solution in N (q) (in terms of bi-objective function values).

Note that there may be several solutions minimizing the feasibility gap, and therefore sev-
eral nearest-to-feasibility solutions and several support solutions. That is why in the defini-
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tions above we wrote a nearest-to-feasibility solution (resp. a support solution) rather than the
nearest-to-feasibility solution (resp. the support solution). However, in this document, we some-
times abuse language and write the instead of a as in such cases these solutions are considered
equivalent.

In the next subsection, we present our methodology for computing a support solution.

5.2. Phase 2: computing a support solution

The algorithm computing a support solution S� in relation to q must explore the neighborhood
N (q). The size of N (q) has a direct impact on the nature of such an algorithm. When N (q) has a
constant or polynomial size, we propose a polynomial-time algorithm. It explores N (q) by exam-
ining each of its subsets of route-equal solutions, given that there is a polynomial number of such
subsets. However, when N (q) has an exponential size, examining an exponential number of such
subsets, one by one, would be computationally intractable. Therefore, we resort to an ILP-based al-
gorithm which implicitly explores N (q) by solving an ILP model. We discuss in what follows both
kinds of algorithms.

Polynomial-time algorithms for computing support solutions. Let q be a question based on a
‘Y’=‘C’ or ‘Y’=‘P’ template (i.e., ‘(X, Y, Z)’ template with ‘Y’ being ‘C’ or ‘P’). The neighborhood
N (q) has a constant or polynomial size. Then, we design a polynomial-time algorithm for com-
puting a support solution S� in relation to q. This algorithm consists essentially of evaluating the
(in)feasibility and the quality of solutions in each subset of N (q) containing route-equal solutions
in order to identify the “best” neighboring solution. More precisely, it consists of computing the
feasibility gap of the task insertion as well as a neighboring solution corresponding to each of these
subsets (as explained previously in Subsection 5.1), and in selecting the best one: if a feasible task
insertion is found and if the resulting feasible neighboring solution is the best found so far (i.e., with
the best bi-objective values), then the algorithm saves the solution as support solution S�; if none
of the task insertions is feasible, then the algorithm saves as S� the neighboring solution whose cor-
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24 M. Lerouge et al. / Intl. Trans. in Op. Res. 0 (2024) 1–34

responding task insertion has the smallest feasibility gap. This whole algorithmic procedure runs in
polynomial time.

Model 3: Transformation model Mt (q) associated with a question q.
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ILP-based algorithms for computing support solutions. Let q be a question based on a ‘Y’=‘E’
template (i.e., ‘(X, Y, Z)’ template with ‘Y’ being ‘E’). The neighborhood N (q) has an exponential
size. Then, we design an ILP-based algorithm for computing a support solution S� in relation to q.
It consists of solving Model 3, an ILP model whose results can be used to build S� from S. We call
it the transformation model and note it Mt (q). It is based on the main model M; however, it differs
from M on various aspects which we detail below. Before that, note that each of (Ins, E), (Ex, E),
and (Ord, E) templates specifies an employee of interest i∗ within their text. In addition, each of
(Ins, E) and (Ex, E) also specifies a task of interest j∗, which corresponds to the task that must be
inserted in the planning of i∗. In the case of (Ord, E), we decide to note j∗ the task positioned in
the middle of the planning of employee i∗.

• General differences.Mt (q) aims at finding the support planning (R�
i∗, C�

i∗ ), which must replace
(Ri∗, Ci∗ ) in the solution S in order to obtain the support solution S�. Therefore, Mt (q) focuses
on optimizing only one planning, namely the one of i∗, whereas M deals with a whole solution.
Let T � be a subset of T containing only the tasks that are involved in the planning of employee i∗

as well as possible other tasks that are relevant for the transformation to apply to S (e.g., the
task to insert in the planning of i∗). Focusing the optimization on only one planning has various
consequences:
- Not all the decision variables of M are involved in Mt (q): only the path decision variables

Ui jk with i = i∗ and the temporal ones Tj with j ∈ T � are indeed necessary for Mt (q). In other
words, moving from M to Mt (q) can be seen as fixing a lot of decisions variables involved in M
and focusing the optimization over the set of the remaining variables.

- There are no sums over E or constraints repeated over E in Mt (q); sums indexed over T in M
are indexed over T � in Mt (q); constraints repeated over T in M are repeated over T � in Mt (q).

- The size of Mt (q) decreases drastically compared to M, facilitating the faster resolution of
Mt (q).

• Decision variables. In addition to the path decision variables and the temporal ones inherited from
M, two new integer variables T j∗ and T j∗ are introduced in Mt (q). Like Tj∗ , they are related to
the time at which the task j∗ starts to be performed by i∗: T j∗ (resp. T j∗) corresponds to the time
at which i∗ can start to perform j∗ while having all the time constraints related to the activities
performed by i∗ before (resp. after) j∗ satisfied and while respecting the lower (resp. upper) bound
of the availability window of j∗. We call T j∗ and T j∗ , BET and FLT decision variables, as they
are the decision-variable equivalents of the BET p

j
and FLT pj . Due to the way they are involved

in Mt (q), T j∗ and T j∗ guarantee the feasibility of Mt (q): either T j∗ > T j∗ and it means that
inserting j∗ in the planning of i∗ is infeasible; or T j∗ = T j∗ and it means that the insertion is
feasible since all the time constraints of the activities performed by i∗ before and after j∗ are
satisfied.

• Multiobjective function. Similarly to M, a multiobjective function (1’) is minimized according to
a lexicographic order in Mt (q). However, the objectives are not the same as in M.
1. The first objective aims at minimizing the difference T j∗ − T j∗ , since having T j∗ = T j∗ means

that the insertion of j∗ in the planning of i∗ is feasible. Note that constraint (12.a’) prevents
the difference T j∗ − T j∗ from being negative.

2. The second objective, maximizing the planning total working time, relates to the first of M.
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3. The third objective, minimizing the planning total traveling time, relates to the second of M.
• Constraints. Most constraints of M still apply in Mt (q) but must be adapted.

- Flow constraints (2)–(4) correspond to (2’) to (4’); however, (2’)–(4’) zoom on employee i∗ and
subset T � while (2)–(4) involve the whole sets E and T .

- No equivalent for the skill constraint (5) appears in the Mt (q) as i∗ is supposed to have a higher
skill level than the ones of all the tasks of T � (as preliminary checks are met).

- Occurrence constraint (6) coincides with (6’) but (6’) zooms on employee i∗ and subset T �.
- Availability, working hours, and sequencing constraints spanning labels from (7) to (11) in M

are also involved in Mt (q), with some changes, and correspond to constraints spanning from
(7.a’) to (11.b’). Each original constraint of M (e.g., constraint (7)) is split into two or three
constraints in Mt (q) (e.g., constraints (7.a’) and (7.b’)) in order to separate the case of j∗, which
involves T j∗ and T j∗ , from the one of any other task j in T �, which involves Tj .

In addition, three new constraints are introduced in Mt (q).
- As mentioned earlier, (12.a’) prevents the difference T j∗ − T j∗ from being negative.
- (12.b’) is simply used for controlling Tj∗ value which is no longer involved in any constraint.
- (13’) corresponds to the neighboring constraints. First introduced for the foil model Mf (q) in

Subsection 4.3, they are written implicitly as “ϕ(X ) ∈ N (q)” since they depend on q. How-
ever, in practice, they are constraints involving path variables and enforcing task assignments,
insertions, replacements, etc.

Now that we described our methodology for computing a support solution S�, we can outline in
the following subsection how we then build an explanation text answering a question q.

5.3. Phase 3: building an explanation text

Based on the results of Phases 1 and 2, we build an explanation text answering question q. We
comment below on how we proceed depending on whether the preliminary checks are successful.

Unsuccessful preliminary checks. If one of the preliminary checks is unsuccessful, we build a
proof-like explanation text from predefined explanation template text. Such template text must be
prepared for each preliminary check in case they appear to be unsuccessful.

For example, let q be the (Ins,E) question: “Why is Carlotta not performing task 12 in addition
to the tasks of her planning?” The preliminary check related to skill constraints is not met: Carlotta
has a skill level of 1 while task 12 requires one of 2. The prepared explanation template text is “〈The
unexpected fact is observed〉 because 〈employee i∗〉 has a skill level of 〈si∗〉 while 〈task j∗〉 has a skill
level of 〈r j∗〉.” Once filled with values, this becomes a proof-like negative explanation text: “Carlotta
is not performing task 12 because Carlotta has a skill level of 1 while task 12 has a skill level of 2.”

Neighborhood exploration. If none of the preliminary checks is unsuccessful, then a support
solution S� is computed in relation to the question q. There are three different cases.

© 2024 The Author(s).
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies.

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13594 by C

ochraneItalia, W
iley O

nline L
ibrary on [10/07/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



M. Lerouge et al. / Intl. Trans. in Op. Res. 0 (2024) 1–34 27

1. Either S� is infeasible due to time constraints, and we must build a negative explanation text
about the infeasibility of the neighboring solutions of N (q).

2. Either S� is feasible but not better than S, and we must build a negative explanation text about
the nonimprovement of N (q).

3. Or S� is feasible and better than S, and we must build a positive explanation text.

In cases 1 and 2, if N (q) has a constant size, that is, all neighboring solutions are route-equal,
precisely because all these solutions are route-equal, we can design a proof-like negative explanation
text which works for all the solutions of N (q). On the opposite, if N (q) has a polynomial or expo-
nential size because neighboring solutions are not all route-equal to each other, we rather resort to
an argument-like negative explanation where we use S� as an example of neighboring solution (S ′

in the definition).
For example, let q be the (Ins, C) question: “Why is Ellen not performing task 27 just after task

17?” The corresponding support solution S� falls into the first case because p
27

+ d27 = 4:37 p.m.
which is later than a27 = 3:00 p.m.. The prepared explanation template text is “〈Employee i∗〉 would
end 〈task j∗〉 at the earliest at 〈p

j∗
+ d j∗〉 while 〈task j∗〉 is not available after 〈a j∗〉, that is why

〈the unexpected fact is observed〉.” Once filled with values, this template text becomes a proof-like
negative explanation text: “Ellen would end task 27 at the earliest at 4:37 p.m. while task 27 is not
available after 3:00 p.m., that is, why Ellen is not performing task 27 just after task 17.”

Finally, in the next subsection, we conduct numerical experiments on large-scale instances and
solutions to measure the performances of our explanation text generation algorithms.

5.4. Numerical study about computation times to generate explanation texts

This subsection presents the numerical experiments that we conduct to assess the computation
times for generating explanation texts on large-scale WSRP instances and solutions. First, we de-
scribe the instances and solutions used for these experiments. Then, we present our experimental
setting as well as the obtained results. Finally, we analyze these results and provide some insights
about our approach.

Instances and solutions. We carry out our numerical experiments over 96 pairs of instances
and solutions, which are available in an online repository (Lerouge, 2023b). Instances are built
from real data provided by our industrial partner DecisionBrain. These data are processed to be
anonymous and adapted to our WSRP use case. The number of employees ranges from 17 to 80,
the number of tasks from 55 to 2014, and skill levels from 1 to 4. For each instance, a solution was
computed using a heuristic algorithm solving WSRP instances. Thus, solutions may not be optimal
and explanations may be positive.

Experimental setting. In Section 4, we presented a list of question templates in Table 1. Given
a template, many questions can be defined by filling its fields with different values (e.g., different
employee names). In our numerical experiments, for each instance–solution pair and for each tem-
plate of Table 1, we define a random sample of questions based on this template. We randomly
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Table 2
Statistics about the explanation computation times using polynomial algorithms

Computation times

Question
template

Median
(seconds)

Third quartile
(seconds)

Maximum
(seconds)

Average
(seconds)

(Ins, C) 0.022 0.035 0.162 0.025
(Ins, P, a) 0.023 0.038 0.104 0.026
(Ins, P, b) 0.114 0.273 3.395 0.213
(Ins, P, c) 0.061 0.093 0.180 0.067
(Ex, C) 0.023 0.035 0.208 0.025
(Ex, P, a) 0.023 0.037 0.091 0.026
(Ex, P, b) 0.115 0.282 3.855 0.222
(Ex, P, c) 0.063 0.095 0.192 0.070
(Ord, C, a) 0.023 0.037 0.100 0.027
(Ord, C, b) 0.024 0.038 0.100 0.027
(Ord, P, a) 0.027 0.041 0.108 0.030
(Ord, P, b) 0.027 0.041 0.120 0.031
(Ord, P, c) 0.030 0.045 0.116 0.034

Table 3
Results of the explanation computation times using ILP-based algorithms

Computation times

Question
template

Completed
computation rate
(%)

First quartile
(seconds)

Median
(seconds)

Third quartile
(seconds)

(Ins, E) 69.84 0.126 1.176 > 15
(Ex, E) 75.61 0.094 0.594 12.823
(Ord, E) 91.03 0.047 0.084 0.302

draw a sample of 40 different questions for each template. Moreover, we limit the time allowed for
computing the explanation text answering each of these questions to 15 seconds, which we consider
as a reasonable time limit—other time limit could be chosen depending on the application con-
text. Then, for each question, we compute the explanation text by running one of the algorithms
described in the previous subsections and interrupt it if the computation lasts for more than 15
seconds. The computations lasting for less than 15 seconds are counted as completed computations,
and their times are saved. The others are counted as interrupted computations.

Algorithms were implemented in Python 3.9 and Gurobi Optimizer 9.5 for solving ILP models.
Experiments were run in MacOS 10.15.7 on a 2.3-GHz Quad-Core Intel i7 processor with 16 GB
RAM. Note that slightly better results could be expected with later versions of Python (3.11) and
Gurobi Optimizer (11.0), which were released after our experiments but are also compatible with
our implementation.

Results. We separate the results of computation times int two tables: Table 2 for the computa-
tions related to polynomial-time algorithms, and Table 3 for the ones related to ILP-based algo-
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rithms. In both tables, each line provides statistics about the computation times associated with one
template. To calculate these statistics, we group together the computation times obtained for all the
instance–solution pairs and for all the random samples of questions by template. All the computa-
tions using polynomial-time algorithms have been completed in less than 15 seconds while part of
the ones using algorithms relying on ILP have been interrupted. Therefore, we do not provide the
same statistics in the two tables.

In Table 2, for each template, we compute the median, third quartile, maximum, and average
of its corresponding computation times. For example, the generated explanation texts answering
questions based on the (Ins, C) template have been computed on average in 0.025 seconds; among
these texts, at least 50% are computed in less than 0.022 seconds, 75% in less than 0.035 seconds,
and the longest to be computed has required 0.162 seconds.

In Table 3, for each template, we first compute its completed computations rate that is, the pro-
portion of completed computations (i.e., computed in less than 15 seconds) among the computa-
tions of explanation texts related to this template; we then compute the first quartile, median, and
third quartile of its computation times. For example, among all the computations of explanation
texts answering questions based on the (Ins, E) template, 69.84% are completed in less than 15
seconds, at least 25% have lasted for less than 0.126 seconds, and at least 50% for less than 1.176
seconds. Note that, for the (Ins, E) template, the third quartile value is given as “> 15 seconds”
since less than 75% of its related computations have been completed in less than 15 seconds.

Analysis and insights. Computational experiments show that explanation texts produced using
polynomial-time algorithms are computed in a very short time: most of them are computed in less
than 0.3 seconds. Such performances were expected due to the polynomial algorithmic complexity
of the algorithms. The experiments also show that, within templates related to a given transfor-
mation family (insertion, exchange, or reordering), explanation texts related to ‘Y’=‘P’ templates
generally require more time to be computed than the ones related to ‘Y’=‘C’ templates (e.g., on
average, (Ins, P, c) texts require 0.067 seconds to be computed while (Ins, C) texts require 0.025 sec-
onds). Such a trend could be anticipated since the size of the sets of neighboring solutions increases
from ‘Y’=‘C’ to ‘Y’=‘P’ templates.

Regarding the explanation texts produced using ILP-based algorithms, whatever the template,
experiments show that more than 50% of the explanation text computations last for a short time:
less than 1.2 seconds. However, a significant proportion of these computations have been inter-
rupted as they have reached the time limit of 15 seconds. Depending on the question template, this
proportion varies from 8.97% to 30.16%.

Thus, execution times required for computing explanation texts are mostly compatible with the
online use in an interactive system. However, for questions related to ‘Y’=‘E’ templates, we have
no guarantee that they can be answered in a reasonable amount of time, shorter than 15 seconds.

6. Conclusion

We addressed the explanation of solutions stemming from an optimization system for end-users,
in the context of a WSRP modeled as a bi-objective ILP. In our approach, explanations are
triggered by user questions. These questions, assumed to be local, contrastive, and neighborhood-
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interpretable, are facilitated by predefined templates. Our mathematical framework defined
explanations, grounded in the feasibility of a foil model: they are either negative based on infeasible
constraints or positive based on feasible solutions. Polynomial and ILP-based algorithms for ex-
planation text generation were proposed. Performance evaluations on large-scale WSRP instances
demonstrated that most explanation texts could be computed in less than 1.2 seconds, indicating
suitability for online interactive use. However, our experiments highlighted certain limitations,
particularly in ensuring that ILP-based algorithms can consistently provide explanations within a
15-second time frame.

In future works, various open questions could be investigated.

• The definition of the WSRP is not unique. Various WSRP complicating features have been inves-
tigated in the literature, for example, Goel and Meisel (2013) consider task precedence constraints,
Bredström and Rönnqvist (2008) workforce synchronization constraints, and Chen et al. (2016)
experience-based service times in the context of a multiday horizon. It would be interesting to
study whether the approach developed in this paper may be extended to generate explanations
for other WSRP variants.

• More generally, an interesting research perspective would be to assess the level of generalization
capability of our approach by investigating its potential applicability to other CO problems. Even
if our approach cannot be straightforwardly applied to any other CO problem, we have reasons
to believe that it can be transposed to a variety of CO problems. First, our approach for modeling
explanations hinges on solution neighborhoods, which is a concept rooted in local search. Sec-
ond, the conceptual framework described in this paper, guiding the progression from an end-user
question to an explanation, is problem-independent. Even though this paper focuses on a WSRP
use case, the key concepts involved in this framework, such as neighborhood-related questions,
foil models, positive and negative explanations, etc., are not specific to the WSRP and could be
used for other problems. Finally, our explanation computation techniques do not depend on the
algorithm used to solve instances of the studied CO problem. They only require a solution to the
instance, without needing to know how it was computed.

• Contrastive reasoning, described in this paper, and counterfactual, presented in Lerouge et al.
(2023), are two possible ways to provide explanations. Then, a comprehensive explanation frame-
work could put together both types. Specifically, a counterfactual explanation could serve as
recourse to a negative contrastive one, to highlight how the instance could be altered to obtain a
feasible and better neighboring solution. This sequence of contrastive followed by counterfactual
explanations was first introduced in the Ph.D. thesis by Lerouge (2023a). We seek to expand on
this idea in future work.
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Appendix A: Solution

Table A1
Description of the solution S = ((Ri, Ci ))i∈E represented in Fig. 1. S is a feasible solution of the WSRP instance given
in Table B1. Each employee i ∈ E is associated with a planning (Ri, Ci ) made of, first, a route Ri, which is a sequence of
activities starting with the departure bi of i (from their home location), followed with the tasks j ∈ T that i performs, and
ending with the return ei of i (to their home location); second, a schedule Ci, which is a sequence of dates at which the
corresponding activities of Ri start to be performed by i. (See Subsection 3.1 for the definition of a solution to a WSRP
instance.)

Employee Planning
(i) (Ri, Ci)

1 R1 = (b1, 7, 30, 3, 26, 1, 17, 8, e1)
C1 = (485, 525, 567, 662, 720, 840, 900, 1009, 1080)

≡ (08:05 a.m., 08:45 a.m., 09:27 a.m., 11:02 a.m., 12:00 p.m., 02:00 p.m., 03:00 p.m., 04:49 p.m., 06:00 p.m.)
2 R2 = (b2, 28, 16, 25, 14, 20, 6, 19, e2)

C2 = (540, 600, 653, 702, 822, 888, 933, 1019, 1080)
≡ (09:00 a.m., 10:00 a.m., 10:53 a.m., 11:42 a.m., 01:42 p.m., 02:48 p.m., 03:33 p.m., 04:59 p.m., 6:00 p.m.)

3 R3 = (b3, 11, 9, 10, 24, e3)
C3 = (480, 542, 670, 717, 840, 906)

≡ (08:00 a.m., 09:02 a.m., 11:10 a.m., 11:57 a.m., 02:00 p.m., 03:06 p.m.)
4 R4 = (b4, 13, 18, 21, 29, 14, 22, e4)

C4 = (480, 482, 564, 656, 738, 866, 925, 1080)
≡ (08:00 a.m., 08:02 a.m., 09:24 a.m., 10:56 a.m., 12:18 p.m., 02:26 p.m., 03:25 p.m., 06:00 p.m.)

5 R5 = (b5, 5, 23, 2, e5)
C5 = (529, 600, 840, 1009, 1080)

≡ (08:49 a.m., 10:00 a.m., 02:00 p.m., 04:49 p.m., 06:00 p.m.)

Appendix B: Instance

© 2024 The Author(s).
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Table B1
Description of the instance on which the solution represented in Fig. 1. The first table describes the data about the set of
employees E . Each employee i ∈ E is characterized by a skill level si, a departure and return location, and a time-window
[wi, wi]. The second table describes the data about the tasks. Each task j is described by a skill level r j , a location, a dura-
tion dj , and a time-window [aj, aj ]. It is assumed that all the employees have the same traveling speed of 50 km/h. Consid-
ering that the earth radius is 6731 km, the traveling time, in minutes, between two locations (lat1, long1) and (lat2, long2)
is computed as follows: 6731 × arccos(sin(lat1) × sin(lat2) + cos(lat1) × cos(lat2) × cos(long2 − long1))/50 × 60. (See
Subsection 3.1 for the definition of a WSRP instance.)

Employee Name Skill level Location Time window
i si [wi, wi]
In E in N

� as (lat., long.) (deg.) as time range as integer range

1 Ellen 2 (47.773, 16.193) [8:00 a.m., 6:00 p.m.] [480, 1080]
2 Alex 3 (47.598, 15.785) [9:00 a.m., 6:00 p.m.] [540, 1080]
3 Adam 2 (48.188, 14.862) [8:00 a.m., 6:00 p.m.] [480, 1080]
4 Fabian 1 (48.069, 14.485) [8:00 a.m., 6:00 p.m.] [480, 1080]
5 Carlotta 1 (47.463, 15.351) [8:00 a.m., 6:00 p.m.] [480, 1080]

Task Skill level Location Duration Time window
j r j d j [aj, aj ]
in T in N

� As (lat., long.) (deg.) (min.) as time range as integer range
1 1 (48.129, 15.754) 40 [8:00 a.m., 6:00 p.m.] [480, 1080]
2 1 (47.240, 15.430) 40 [2:00 p.m., 6:00 p.m.] [840, 1080]
3 1 (47.803, 15.348) 40 [11:00 a.m., 6:00 p.m.] [660, 1080]
4 1 (47.913, 15.539) 30 [2:00 p.m., 6:00 p.m.] [840, 1080]
5 1 (47.240, 14.639) 40 [8:00 a.m., 12:00 p.m.] [480, 720]
6 3 (47.719, 15.856) 40 [8:00 a.m., 6:00 p.m.] [480, 1080]
7 2 (47.691, 15.979) 30 [8:45 a.m., 12:00 p.m.] [525, 720]
8 1 (47.904, 15.988) 40 [8:00 a.m., 6:00 p.m.] [480, 1080]
9 1 (48.252, 15.159) 40 [9:00 a.m., 12:00 p.m.] [540, 720]
10 2 (48.233, 15.094) 80 [9:00 a.m., 6:00 p.m.] [540, 1080]
11 2 (47.879, 14.348) 40 [8:00 a.m., 6:00 p.m.] [480, 1080]
12 2 (47.151, 15.559) 40 [8:00 a.m., 6:00 p.m.] [480, 1080]
13 1 (48.073, 14.500) 30 [8:00 a.m., 6:00 p.m.] [480, 1080]
14 1 (47.509, 15.979) 50 [8:00 a.m., 6:00 p.m.] [480, 1080]
15 2 (48.182, 15.480) 25 [8:00 a.m., 2:00 p.m.] [480, 840]
16 1 (47.307, 16.030) 30 [8:00 a.m., 6:00 p.m.] [480, 1080]
17 1 (48.174, 15.768) 40 [12:30 p.m., 4:00 p.m.] [750, 960]
18 1 (47.696, 14.639) 40 [8:00 a.m., 6:00 p.m.] [480, 1080]
19 2 (47.466, 15.662) 40 [8:00 a.m., 6:00 p.m.] [480, 1080]
20 2 (47.624, 15.928) 30 [8:00 a.m., 6:00 p.m.] [480, 1080]
21 1 (47.893, 15.139) 45 [8:00 a.m., 6:00 p.m.] [480, 1080]
22 1 (47.799, 15.814) 30 [3:00 p.m., 6:00 p.m.] [900, 1080]
23 1 (47.430, 15.794) 30 [10:00 a.m., 3:00 p.m.] [600, 900]
24 2 (48.178, 15.144) 40 [2:00 p.m., 3:00 p.m.] [840, 900]
25 1 (47.382, 16.094) 40 [8:00 a.m., 1:00 p.m.] [480, 780]
26 2 (47.809, 15.206) 40 [12:00 p.m., 6:00 p.m.] [720, 1080]
27 2 (47.948, 15.950) 50 [8:00 a.m., 3:00 p.m.] [480, 900]
28 3 (47.160, 15.991) 30 [8:00 a.m., 6:00 p.m.] [480, 1080]
29 1 (47.829, 15.253) 40 [8:00 a.m., 1:00 p.m.] [480, 780]
30 1 (47.646, 15.907) 40 [8:00 a.m., 12:00 p.m.] [480, 720]
31 2 (47.399, 15.535) 40 [8:00 a.m., 4:00 p.m.] [480, 960]

© 2024 The Author(s).
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
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