

Designing and generating user-centered

explanations about solutions of a

Workforce Scheduling and Routing Problem

Conception et génération d’explications à propos des solutions

 d’un problème de planification d’employés mobiles

pour les utilisateurs d’un système d’optimisation

Thèse de doctorat de l'université Paris-Saclay

École doctorale n°573 Interfaces : Matériaux, systèmes, usages

Spécialité de doctorat : Informatique

Graduate School : Sciences de l’ingénierie et des systèmes. Référent : voir CentraleSupélec

Thèse préparée dans l’unité de recherche Mathématiques et Informatique pour

la Complexité et les Systèmes (Université Paris-Saclay, CentraleSupélec),

sous la direction de Vincent MOUSSEAU, Professeur, Université Paris-Saclay,

CentraleSupélec (MICS), de Wassila OUERDANE, Maître de conférence HDR,

Université Paris-Saclay, CentraleSupélec (MICS), et Céline GICQUEL, Maître de

conférence HDR, Université Paris Saclay (LISN).

Thèse soutenue à Paris-Saclay, le 27 novembre 2023, par

 Mathieu LEROUGE

Composition du Jury
Membres du jury avec voix délibérative

Odile BELLENGUEZ

Professeur, IMT Atlantique
 Présidente

François CLAUTIAUX

Professeur, Université de Bordeaux
 Rapporteur & Examinateur

Alexis TSOUKIAS

Directeur de recherche CNRS, Université Paris Dauphine
 Rapporteur & Examinateur

Claudia ARCHETTI

Professeur, ESSEC Business School
 Examinatrice

N
N

T
 :
 2

0
2
3
U

P
A

S
T
1
7
4

T
H

E
S

E
 D

E
 D

O
C

T
O

R
A

T

Titre: Conception et génération d’explications à propos des solutions d’un problème de planification d’employés
mobiles pour les utilisateurs d’un système d’optimisation
Mots clés: Optimisation Combinatoire, Intelligence Artificielle, Problèmes de planification d’employés mobiles,
Explications orientées utilisateur, Explications contrastives, scénarios et contrefactuelles, Système d’aide à la décision.

Résumé: Les systèmes d’aide à la décision basés sur
l’optimisation combinatoire trouvent des applications
dans divers domaines professionnels. Cependant, les dé-
cideurs qui utilisent ces systèmes ne comprennent sou-
vent pas les concepts mathématiques et les principes al-
gorithmiques qui les sous-tendent. Ce manque de com-
préhension peut entraîner du scepticisme et une réticence
à accepter les solutions générées par le système, éro-
dant ainsi la confiance placée dans le système. Cette
thèse traite cette problématique dans le cas du prob-
lème de planification d’employés mobiles, en anglais
Workforce Scheduling and Routing Problem (WSRP),
un problème d’optimisation combinatoire couplant de
l’allocation de ressources humaines et du routage. Tout
d’abord, nous proposons un cadre qui modélise le proces-
sus d’explication de solutions pour les utilisateurs d’un
système de résolution de WSRP, permettant d’aborder
une large gamme de sujets. Les utilisateurs initient le
processus en faisant des observations sur une solution et
en formulant des questions liées à ces observations grâce
à des modèles de texte prédéfinis. Ces questions peuvent

être de type contrastif, scénario ou contrefactuel. D’un
point de vue mathématique, elles reviennent essentielle-
ment à se demander s’il existe une solution faisable et
meilleure dans un voisinage de la solution courante. Selon
les types de questions, cela conduit à la formulation d’un
ou de plusieurs problèmes de décision et de programmes
mathématiques. Ensuite, nous développons une méthode
pour générer des textes d’explication de différents types,
avec un vocabulaire de haut niveau adapté aux utilisa-
teurs. Notre méthode repose sur des algorithmes efficaces
calculant du contenu explicatif afin de remplir des mod-
èles de textes d’explication. Des expériences numériques
montrent que ces algorithmes ont des temps d’exécution
globalement compatibles avec une utilisation en temps
quasi-réel des explications par les utilisateurs. Enfin, nous
présentons un design de système structurant les interac-
tions entre nos techniques de génération d’explications et
les utilisateurs qui reçoivent les textes d’explication. Ce
système sert de base à un prototype d’interface graphique
visant à démontrer l’applicabilité pratique et les potentiels
bénéfices de notre approche dans son ensemble.

Title: Designing and generating user-centered explanations about solutions of a Workforce Scheduling and Routing
Problem
Keywords: Combinatorial Optimization, Artificial Intelligence, Working Scheduling and Routing Problem, User-
centered explanations, Contrastive, scenario and counterfactual explanations, Decision support system

Abstract: Decision support systems based on combina-
torial optimization find application in various professional
domains. However, decision-makers who use these sys-
tems often lack understanding of their underlying mathe-
matical concepts and algorithmic principles. This knowl-
edge gap can lead to skepticism and reluctance in ac-
cepting system-generated solutions, thereby eroding trust
in the system. This thesis addresses this issue in the
case of the Workforce Scheduling and Routing Problems
(WSRP), a combinatorial optimization problem involving
human resource allocation and routing decisions. First,
we propose a framework that models the process for ex-
plaining solutions to the end-users of a WSRP-solving
system while allowing to address a wide range of top-
ics. End-users initiate the process by making observa-
tions about a solution and formulating questions related
to these observations using predefined template texts.
These questions may be of contrastive, scenario or coun-
terfactual type. From a mathematical point of view,

they basically amount to asking whether there exists a
feasible and better solution in a given neighborhood of
the current solution. Depending on the question types,
this leads to the formulation of one or several decision
problems and mathematical programs. Then, we develop
a method for generating explanation texts of different
types, with a high-level vocabulary adapted to the end-
users. Our method relies on efficient algorithms for com-
puting and extracting the relevant explanatory informa-
tion and populates explanation template texts. Numerical
experiments show that these algorithms have execution
times that are mostly compatible with near-real-time use
of explanations by end-users. Finally, we introduce a sys-
tem design for structuring the interactions between our
explanation-generation techniques and the end-users who
receive the explanation texts. This system serves as a
basis for a graphical-user-interface prototype which aims
at demonstrating the practical applicability and potential
benefits of our approach.

À Éliane et Gisèle

Remerciements
Le lundi 27 novembre 2023, dans l’intimité de l’amphithéâtre e.068, doté de ses modestes quatre rangs de sièges, j’ai

eu le privilège de soutenir ma thèse de doctorat, autrement dit, d’exposer trois ans de travail, dans un temps imparti
de 45 minutes, face aux regards critiques d’experts, disposés à prolonger ce moment de vulnérabilité par une longue
série de questions. . . Alors que ce moment aurait normalement dû déclencher mon habituelle angoisse des présentations
publiques, je l’ai étonnamment vécu avec tranquillité. Certaines personnes ont interprété mon calme comme l’expression
de ma supposée confiance, due à ma potentielle maîtrise approfondie de mon sujet. Pour ma part, je préfère attribuer
ma sérénité à la bienveillance et au soutien que me porte mon auditoire, et que me portent plus largement toutes les
personnes représentées par mon auditoire, à savoir, ma direction de thèse, mes collègues, mes amis et ma famille. Cet
environnement social constitue pour moi une richesse profonde et une source de fierté considérable. Ainsi, je souhaite
exprimer ma gratitude à leur égard dans les paragraphes qui suivent.

Céline, Vincent, Wassila, merci beaucoup pour votre confiance, votre disponibilité et votre soutien pendant ces trois
années de collaboration. En formant un trio complémentaire et cohérent, tant sur le plan technique, humain et managérial,
vous avez su me guider dans mon travail de recherche, depuis mes premières lectures d’articles jusqu’à ma défense de
thèse. Céline, je retiendrai de cet oral de présentation de thèse, le regard attentif et lumineux que tu m’as porté tout au
long de mon discours, qui je crois reflète assez bien ta bienveillance et ta douceur, constantes, au cours de ces trois années.
Vincent, je garderai en mémoire ton attitude souriante et détendue en ce 27 novembre, toi qui sais toujours apporter
de la légèreté au sérieux, dont le potentiel angoissant en est atténué par la même occasion. Wassila, je me souviendrai
entre autres de tes discrets hochements de tête et de tes légers plissements d’yeux pendant le moment des questions, les
premiers signifiant ton accord avec mes propos et les seconds me suggérant que des précisions sont possibles, le tout pour
m’inciter à toujours donner le meilleur de moi-même - une attitude que tu as tenue ici pendant la soutenance, mais plus
généralement pendant toute la thèse. Merci encore à vous trois pour ces trois années de travail et de plaisir !

Je tiens ensuite à exprimer ma gratitude envers les membres de mon jury, Alexis, François, Claudia et Odile. Merci à
vous quatre pour l’intérêt que vous avez porté pour mon travail, pour vos questions, pour les discussions que nous avons
eu le jour de ma soutenance, ainsi que pour vos mots de félicitations à l’issue des délibérations. En particulier, Alexis
et François, merci pour vos rapports encourageants qui m’ont rassurés en amont de la soutenance. Fidèle à moi-même
François, j’ai décidé de faire des remerciements un peu verbeux !

Je tiens ensuite à remercier tous mes collègues de DecisionBrain. Daniel et Filippo, merci pour m’avoir accueilli au
sein de l’entreprise, malgré mon statut extérieur - que je m’amuse souvent à qualifier de “parasite”. Avec bientôt le projet
de post-doc à Bologne, il est désormais certain que notre collaboration ne va pas s’arrêter à cette thèse. Merci également
à vous deux ainsi qu’à Désirée pour l’intérêt que vous avez porté pour mon travail de recherche, illustré notamment par les
nombreuses réunions au début de ma thèse, lorsque j’avais besoin de me définir des pistes à explorer et alors que je n’avais
pas forcément beaucoup de matière à présenter. Anne-Laurence et Mehdi, merci pour toutes ces heures d’enseignement
partagées, à discuter du contenu à transmettre à nos élèves mais également de la meilleure pédagogie à adopter pour y
parvenir. Bruno, merci de m’avoir accompagné à ma toute première conférence, où je devais exposer mes réflexions face à
de nombreux industriels expérimentés, rendant le moment un peu impressionnant. Sébastien, merci pour tous tes conseils
avisés sur la rédaction de mon manuscrit et sur la préparation de ma soutenance - ainsi que pour tous tes petits desserts
! Roberta, chère happiness manager, merci pour toutes tes propositions d’activités, ta joie et ta sincérité. Alexa, merci
pour avoir contribué volontairement ou involontairement à me sentir à l’aise au bureau en étant ma première voisine de
bureau dans l’open space, avec qui je partageais des musiques, des recettes, etc. - y gracias por las manzanas con tajin!
Elisa, merci pour ton écoute, nos partages de podcasts et nos conversations en anglais, français et italien - qui tendent de
plus en plus à être dans les deux dernières langues, certo! Giulia, grazie per i compiti e grazie per la salsa, ci vediamo a
Bologna! Antoine et Marie, merci pour ces descentes de piste de ski et ces parties de babyfoot - auxquelles je suis toujours
aussi mauvais ! Nevra, thank you for all your energy, your curiosity and our passionate talks about paintings. Merci, merci
à tous. Il n’y a aucun doute que bénéficier d’un tel environnement professionnel m’a apporté une grande richesse et une
grande stabilité dans mon quotidien.

J’aimerais ensuite dédier les prochaines lignes à remercier mes amies et amis.
Il y a d’abord celles et ceux que je connais depuis des années - voire même véritablement des décennies pour certaines

personnes ! Chiddi, merci pour toutes ces années, pour nos innombrables conversations, au téléphone, au restaurant ou
dans la voiture, à 3h du matin, stationnée depuis déjà plusieurs heures. Merci pour ton écoute, ton ouverture d’esprit,
ta curiosité. Merci de me faire grandir au travers de nos conversations, les podcasts, les vidéos, les recettes, tous les
contenus que l’on se partage. Lucas, merci également pour toutes ces années, nos soirées, nos vacances, nos week-ends
à la campagne, nos repas et apéros maison avec Juju, nos fêtes de Nouvel An - surtout celui aux Sables ! Merci pour
ton humour, tes bêtises et ta lourdeur - tiens, ça me rappelle quelqu’un ça ! Tanguy, merci pour ta curiosité, pour

i

avoir pris le temps de t’informer sur mon travail et puis pour avoir fait le déplacement jusqu’à CentraleSupélec pour ma
soutenance. Merci pour nos séances d’escalade, passées et futures - ainsi qu’à nos séances de surf, passées et futures ?...
Flavio, mon broc, merci pour ta sincérité, ta générosité, ton sens de l’accueil. Merci également d’être venu assister à ma
soutenance. Bientôt l’ouverture de la maison d’hôtes ? Camille, mon éternel binôme d’anniversaire, merci pour tes fous
rires, ta tendresse, tes maladresses. Et j’espère que l’avenir sera fait de plus d’Uzès, avec les petits Michels !

Il y a également celles et ceux que j’ai rencontrés dans les études supérieures, en particulier à l’École des Ponts. Séverine
et Yanis, merci d’être venus assister à ma soutenance pour représenter ce petit groupe et merci d’avoir bravé la galère des
transports en commun pour venir jusqu’à CentraleSupélec ! Darius et Victor, merci pour la curiosité que vous avez porté
envers mon travail au cours de ces années de thèse et pour avoir assisté à ma soutenance en ligne. Nerea, partenaire de
sorties cinéma et visites de musée, merci pour ton écoute et ton soutien, en particulier dans les périodes où j’en ai eu
besoin - y claro, gracias a ti y tus padres por el curso de preparación de tortilla en Bilbao! Merci à Jeanne, mon ancienne
colocataire rue des Prairies qui m’a vu démarrer cette thèse, à Bastien, notre professeur de maths préféré, Baptiste, notre
futur docteur, Pierre notre déjà-docteur. Kaio, obrigado por ter sido curioso o suficiente para assistir à minha defesa,
online do Brasil e, acima de tudo, obrigado por me receber em sua casa!

Et puis, il y a celles et ceux qui sont entrés plus récemment dans ma vie. Hanna, Karine et Michele, merci pour cette
année de colocation, pour nos multiples conversations dans le salon, notre jungle à la lumière tamisée. Merci pour nos
soirées en petits et grands comités, pour nos apéros, nos brunchs, nos cafés. Merci pour votre présence et votre soutien
quotidien. Vous êtes l’une de mes plus belles expériences de colocation à ce jour et je compte bien en profiter pendant ces
quelques prochains mois. Manu, ça a été un plaisir de faire ces trois années de thèse, de recherche, d’enseignement, de
conférences en ta présence. Merci pour tous tes présents, bracelets, tee-shirt, statuette. Et bientôt à toi d’obtenir le titre
de docteur ! Anaïs, merci pour ton intelligence, ton empathie, ta douceur, ton miel, et tes grains de maïs un peu partout
dans tes plats !

Pour terminer, j’aimerais remercier ma famille, entre autres ma mère, mon père, ma soeur et mon frère. Maman,
papa, merci d’être venus assister à ma soutenance, et désolé de ne pas m’être étendu le jour de ma soutenance dans les
remerciements à votre égard, parce que quand j’ai croisé vos yeux brillants d’humidité, je me suis dit que je n’allais pas
parvenir à retenir mes émotions bien longtemps. Merci pour votre confiance, votre soutien, notamment dans mon parcours
scolaire. Finalement, je ne serai pas architecte, mais docteur en informatique ! Par contre, je n’ai toujours pas écarté
l’idée d’une reconversion dans le milieu de la cuisine dans le futur. . . Débo, merci d’avoir assisté à ma soutenance en
ligne et d’avoir fait ma promotion auprès de tes collègues. Je sais que tu aurais aimé être présente sur place mais je te
savais présente en ligne, c’est le plus important. Et merci à toi et à Adri de faire que la famille Lerouge s’agrandisse, ce
qui promet de nombreuses heureuses fêtes de famille !

ii

Contents

List of Figures v

List of Tables v

List of Algorithms vi

Notations vii

1 Introduction 1
1.1 Context and motivations . 1
1.2 Proposals and contributions . 3
1.3 Manuscript structure . 4

2 Literature related to explanations 5
2.1 Introduction . 5
2.2 A few insights about explanations from social sciences . 5
2.3 Explanations in Artificial Intelligence . 6
2.4 Explanations in Operations Research . 9
2.5 Conclusion . 10

3 Background on the Workforce Scheduling and Routing Problem (WSRP) 13
3.1 Introduction . 13
3.2 Definition of our WSRP use case . 13

3.2.1 General characteristics . 13
3.2.2 Integer Linear Programming (ILP) model . 15

3.3 Solution transformations and neighborhoods . 17
3.3.1 Preliminaries . 18

3.3.1.1 Elementary transformations . 18
3.3.1.2 Efficient assessment of elementary transformation feasibility 20
3.3.1.3 Additional notions related to elementary inserting transformations 22

3.3.2 Constant-size transformations . 23
3.3.3 Polynomial-size transformations . 25
3.3.4 Exponential-size transformations . 27

3.4 Conclusion . 28

4 New framework for modeling explanations 31
4.1 Introduction . 31
4.2 End-user related steps - From observations to questions . 33

4.2.1 End-user observations about a solution . 33
4.2.2 End-user questions about a solution . 34

4.3 Mathematical steps - From questions to explanations . 36
4.3.1 Decision-problem interpreted questions . 36
4.3.2 Foil-model interpreted questions . 38
4.3.3 Explanations . 39

4.4 Conclusion . 40

iii

5 Approach for generating explanation texts 43
5.1 Introduction . 43
5.2 Typical expressions . 44
5.3 Generating contrastive explanation texts . 45

5.3.1 Preliminary checks . 45
5.3.2 Complete checks - identifying a support solution . 48
5.3.3 Complete checks - building an explanation text using the support solution 56
5.3.4 Numerical experiments . 59

5.4 Generating scenario explanation texts . 61
5.5 Generating counterfactual explanation texts . 63

5.5.1 Identifying support relaxation-solution pair . 65
5.5.2 Building counterfactual explanation texts from support relaxation-solution pair 70
5.5.3 Numerical experiments . 72

5.6 Conclusion . 74

6 Designing and implementing a system for presenting explanations to end-users 77
6.1 Introduction . 77
6.2 Explanation system . 78

6.2.1 Design of the explanation system . 78
6.2.2 Usage example of the explanation system . 80

6.3 Graphic User Interface (GUI) prototype . 82
6.3.1 Elementary views of the GUI . 82
6.3.2 Requesting explanations about the current solution . 86
6.3.3 Comparing instances and solutions in the history . 89

6.4 Conclusion . 90

7 Conclusion and perspectives 93
7.1 Conclusion . 93
7.2 Perspectives . 94

A Illustrative example 101
A.1 Instance . 101
A.2 Solution . 102
A.3 Time slacks . 102

B ILP solution 103

C Bijection 104

D Synthèse en français 105

iv

List of Figures
1.1 Intriguing fact observed in a WSRP solution . 1

2.1 Key characteristics of XAI methods . 7
2.2 Positioning of the thesis in relation to key characteristics of XAI methods 11

3.1 Routes and schedules of a solution of a WSRP instance. 14
3.2 Neighboring solutions obtained by applying elementary transformations. 19
3.3 Computation of a backward time slack . 20
3.4 Backward critical activity. 23
3.5 Neighboring solutions obtained by applying constant-size transformations. 24
3.6 Neighboring solutions obtained by applying a polynomial-size insertion. 26

4.1 Intriguing observation about a WSRP solution . 31
4.2 Overview of our framework modeling the explanation process, from observations to explanations. 32
4.3 Neighborhood of a solution related to an observation. 36

5.1 Algorithmic framework for generating contrastive explanation texts. 46
5.2 Building contrastive negative explanation text about time-infeasibility. 57
5.3 Building a contrastive negative explanation text about non-improvement. 58
5.4 Building a scenario negative explanation texts about time-infeasibility. 62
5.5 Building a scenario negative explanation text about non-improvement. 62
5.6 Algorithmic framework for generating counterfactual explanation texts. 64
5.7 Building a counterfactual negative explanation texts about time-infeasibility. 71
5.8 Building a counterfactual negative explanation text about non-improvement. 71
5.9 Building a negative explanation text about time-infeasibility given any type of question 75
5.10 Building a negative explanation text about non-improvement given any type of question. 76

6.1 General working principle of the explanation system. 79
6.2 Representation of support solution involved in the negative contrastive explanation. 81
6.3 Representation of support solution involved in the negative scenario explanation. 81
6.4 Representation of support solution involved in the positive counterfactual explanation. 82
6.5 GUI “Home” view. 83
6.6 GUI “Instance description” view . 84
6.7 GUI “Solution description” view . 85
6.8 GUI “Solution explanation” view - part 1 . 86
6.9 GUI “Solution explanation” view - part 2 . 87
6.10 GUI “Solution explanation” view - part 3 . 88
6.11 GUI “Solution explanation” view - part 4 . 88
6.12 GUI “Solution explanation” view - part 5 . 89
6.13 GUI “Instances comparison” view. 90
6.14 GUI “Solutions comparison” view. 91

v

List of Tables
3.1 List of transformations. 29

4.1 List of observation templates. 34
4.2 List of question templates. 35
4.3 Summary of the main concepts involved in the modeling of the question-to-explanation pathway for each

of the three types of explanations. 41

5.1 Template texts of typical expressions . 44
5.2 Parameters and instructions involved in the generic polynomial-time algorithm for computing support solutions 50
5.3 Parameters and constraints involved in the generic contrastive transformation ILP model 55
5.4 Statistics about the contrastive explanation computation times using polynomial-time algorithms. 60
5.5 Statistics about the contrastive explanation computation times using ILP-based algorithms. 60
5.6 Parameters and constraints involved in the generic counterfactual transformation ILP model 69
5.7 Statistics about the counterfactual explanation computation times. 73

A.1 Description of a WSRP instance. 101
A.2 Description of a solution of a WSRP instance. 102
A.3 Description of the sequences of Backward Time Slacks and Forward Time Slacks. 102

B.1 Description of an ILP-solution . 103

vi

List of Algorithms
5.1 Polynomial-time algorithm for computing a support solution . 51
5.2 ILP-based algorithm for computing a support solution . 55
5.3 ILP-based algorithm for computing a support relaxation-solution pair . 70

C.1 Bijection from a feasible to ILP-solution to a feasible solution . 104
C.2 Bijection from a feasible solution to a feasible ILP-solution . 104

vii

Notations

Workforce Scheduling and Routing Problem
I Instance
E Set of employees
n Number of employees

skei Skill level of employee i
[lbei, ubei] Working time window of employee i

T Set of tasks
m Number of tasks

dtj Duration of task j
sktj Skill level of task j

[lbtj , ubtj] Availability time window of task j
Ai Set of activities of employee i
di Departure of employee i from their home (activity)
ri Return of employee i to their home (activity)

trjk Travel time between activities j and k

S Solution (i.e. family of plannings)
(Ri, Ci) Planning (i.e. a route-schedule pair) of employee i

Ri Route of employee i
Ci Schedule of employee i

stj Start time of activity j (within an employee schedule)
twt(S) Total working time of solution S
trt(S) Total travel time of solution S

mm(I) Main model related to instance I
X Main model solution (i.e. assignment of the decision variables involved in the main model)
Tj Start time decision variable (integer) fixing the start time of task j

Uijk Path decision variable (binary) fixing whether employee i goes from activity j to activity k or not

φ Bijection mapping main model solutions into solutions

Solution transformations and neighborhoods
tf Transformation

N (tf,S) Neighborhood induced by the transformation tf applied to the solution S

bj Backward Time Slack (BTS) of activity j (as part of a given planning)
fj Forward Time Slack (FTS) of activity j (as part of a given planning)

stb
j Backward Earliest start Time (BET) of task j (when inserting j in a given planning)

stf
j Forward Latest start Time (FLT) of task j (when inserting j in a given planning)

viii

Modeling explanations
o Observation (about a given solution)

I ′ Other instance (usually a relaxation of an initial instance)
J ′ Set of other instances (usually set of relaxations of an initial instance)

q Question (about a given solution)
qc(o,S, I) Contrastive question: “Why o is observed in S, solution of I?”

qs(o,S, I, I ′) Scenario question: “o is observed in S, solution of I, but what if I is changed into I ′?”
qh(o,S, I,J ′) Counterfactual question: “o is observed in S, solution of I,

but how to observe ¬o considering that I can be changed into I ′ ∈ J ′?”

N (o,S) Neighborhood induced by the transformation related to the observation o applied to the solution S
dp(o,S, I) Decision problem related to observation o about S, solution of instance I

dpq(q) Decision-problem interpreted question associated with question q

fm(o,S, I) Foil model related to observation o about S, solution of instance I
fmq(q) Foil-model interpreted question associated with question q

x(q) Explanation of question q
ux(q) Explanation text of question q

Generating explanation texts
I⋆ Support relaxation
S⋆ Support solution

(I⋆,S⋆) Support relaxation-solution pair

ctm(o,S, I) Contrastive transformation model solved for computing a support solution
T lb

j∗ BET decision variable (integer) related to task j∗

T ub
j∗ FLT decision variable (integer) related to task j∗

htm(o,S, I,J ′) Counterfactual transformation model solved for computing a support relaxation-solution pair
∆Dtj Altering decision variable (integer) for reducing the duration dtj of task j

∆LBTj Altering decision variable (integer) for decreasing the availability lower-bound lbtj of task j
∆UBTj Altering decision variable (integer) for increasing the availability upper-bound ubtj of task j

XDtj Decision variable (binary) enabling the reduction of the duration dtj of task j
XLBTj Decision variable (binary) enabling the decrease of the availability lower-bound lbtj of task j
XUBTj Decision variable (binary) enabling the increase of the availability upper-bound ubtj of task j
∆Tmax Decision variable (integer) measuring the largest alteration

∆LBEi Altering decision variable (integer) for decreasing the availability lower-bound lbtj of task j
∆UBEi Altering decision variable (integer) for increasing the availability upper-bound ubtj of task j
XLBEi Decision variable (binary) enabling the decrease of the working time window lbei of employee i
XUBEi Decision variable (binary) enabling the increase of the working time window ubei of employee i

ix

x

Chapter 1 Introduction
1.1 Context and motivations

Nowadays, decision support systems based on Combinatorial Optimization (CO) find application in various professional
domains. However, most often, the decision-makers who use these optimization-based systems do not have the necessary
background to fully understand their mathematical concepts and algorithmic principles; and even if they do, they may
be surprised by some aspects of the decisions proposed by the systems, leading to doubts about the relevance of these
decisions. In both cases, the lack of understanding can erode the decision-makers’ trust in the optimization-based systems,
causing reluctance to implement the suggested decisions.

In this thesis, we focus on the case of organizations using decision support systems to enhance resource management
by solving a CO problem called the Workforce Scheduling and Routing Problem (WSRP). The WSRP involves assigning
geographically dispersed tasks to mobile employees and building a route-schedule pair for each employee. Such a pair
specifies the time at which the employee begins and ends their working day, the tasks they have to perform, at what
times and in what order. The solution of a WSRP should comply with various constraints, including constraints regarding
employee working hours, task availability hours, skill requirements to perform tasks, etc. Being a generalization of vehicle
routing problems and scheduling problems which are NP-hard problems, the WSRP is also an NP-hard problem [VDG19].
In the literature, it arises in many and various contexts such as home care services [MSV19] or heating, ventilation, and
air-conditioning home services [CTH16]. A comprehensive literature review on the WSRP can be found in [CSLSQ16].

Focusing on the case of organizations solving the WSRP has been originally motivated by the needs of our industrial
partner DecisionBrain1. DecisionBrain is a French company which develops and sells optimization software products,
primarily in the fields of workforce management and production planning. The optimization problems that they address
thus involve routing, scheduling and lot-sizing problems. Among others, they develop for their customers a decision support
system for solving variants of the WSRP. Since the WSRP is an NP-hard problem, decision-makers using DecisionBrain’s
system may feel overwhelmed by the high combinatorial aspect of the problem. They sometimes have difficulties in
appreciating why generated solutions are good ones and contact DecisionBrain to ask questions about these solutions.

14.5 14.75 15.0 15.25 15.5 15.75 16.0 16.25

47.25

47.5

47.75

48.0

48.25

48.5

longitude

lat
itu

de

El

Al

Ad

Fa

Ca

12

15

27

31

1

3 7

8

17

26

30
6

14

16

19
20

25

28

910

11

24

4

13

18

21
2229

25

23

El

Al

Ad

Fa

Ca

7AM 9AM 11AM 1PM 3PM 5PM 7PM

hour

7 30 3 26 1 17 8

28 16 25 14 20 6 19

11 9 10 24

13 18 21 29 4 22

5 23 2

Figure 1.1: Intriguing fact observed (highlighted by the orange ellipse) in a WSRP solution whose routes are depicted on
the left and schedules on the right.

Figure 1.1 depicts a typical situation where decision-markers are provided with a solution obtained thanks to a WSRP-
solving system and wonder about some facts observed in the solution. The figure primarily represents a WSRP solution.
Each employee is related to a color, e.g. the color red for Ellen (El in the figure). The graph on the left represents routes:
colored dots correspond to tasks performed by employees and gray ones to non-performed tasks, while squares correspond

1https://decisionbrain.com/

1

to employee starting locations, which we call home for convenience. The Gantt chart on the right depicts schedules: high
and colored rectangles represent tasks; small and gray ones represent employee traveling times to go from one task to
another; for both groups, the width of a rectangle matches the duration of what it represents. While looking at this figure,
the decision-makers may be intrigued by a fact observed in the solution. Namely, in the graph of routes on the left, an
orange ellipse spotlights that Ellen is not performing task 27 even though it is on her route between task 17 and task 8.
There may be various causes behind this fact: e.g. i) Ellen might not be skilled enough to perform task 27, ii) she might
not be able to be at task 27 early enough to perform it while it is available, or iii) she might actually be able to perform
task 27 but the heuristic WSRP-solving system missed it. Therefore, interested in knowing the causes behind this fact,
Decision-makers may wonder: “Why is Ellen not performing task 27 in addition to her tasks?” On one hand, answering
such questions is time-consuming for system designers, like DecisionBrain, as it supposes firstly to get familiar with the
WSRP instance and solution data, and secondly to find explanatory content to provide to the decision-makers. On the
other hand, without answering these questions, decision-makers may gradually loose trust in the WSRP-solving system and
be less inclined to use it. One way to tackle these issues is to design an approach for automatically generating explanations
for decision-makers using WSRP-solving systems.

Developing techniques for generating explanations falls under the wide field of Explainable Artificial Intelligence (XAI)
[GA19] and relates to what the XAI community calls explainability. In Machine Learning (ML), explainability is defined
as follows [BADRDS+20]: “Given a certain audience, explainability refers to the details and reasons a model gives to
make its functioning clear or easy to understand.” Over the last ten years, explainability has been attracting substantial
attention in the Artificial Intelligence (AI) community, especially in the ML one [BADRDS+20]. This strong interest has
been driven by initiatives such as the XAI research program funded by the Defense Advanced Research Projects Agency2

in the United States and by the recent introduction of the General Data Protection Regulations [GDP16] in Europe. The
latter gives individuals the right to obtain explanations about how a decision affecting their life and made automatically
by an algorithm has been reached. Independently of the AI field they relate to, most works dealing with explanation share
common goals, including algorithmic transparency, user trust and bias mitigation [MZR21]. Besides, they often rely on the
same fundamentals concepts rooted in social sciences and philosophy such as the notions of contrastive question [Lip90]
or counterfactual explanations [Lew73]. Works on explanation from different fields may thus inspire each other. However,
the differences between these fields (in terms of problems, use cases, models, inputs, algorithms, etc.), pose challenges
when attempting to directly transpose an explanation method developed for one field to another. For instance, methods
generating explanations as saliency heatmaps (a.k.a. sensitivity maps) in Deep Learning [ZF14, SVZ14] cannot be easily
converted into some equivalent methods that may be used in Operations Research (OR) contexts, and more specifically
in CO contexts. Thus, in order to provide explanations to decision-makers using optimization systems, it is necessary to
design explanation methods tailored specifically for CO contexts.

Yet, to the best of our knowledge, there are only a few works dealing with explanations for problems that could be
formulated in CO terms, see [LKS18, ČLMT19, KSB21]. Ludwig et al. [LKS18] study a scheduling problem and seek to
provide explanations about the sequence and timing of the tasks. However, the provided explanations tightly depend on
the heuristic approach used for solving the problem, which supposes that the people receiving the explanations know about
the heuristic and agree to solve their instances with this sub-optimal algorithm. Čyras et al. [ČLMT19] also consider a
scheduling problem but propose an explanation method based on abstract argumentation [Dun95]. But this method seems
to be applicable only to a specific class of integer linear programs: the program needs to be essentially based on binary
variables and clique constraints on these variables, which is quite limiting. Korikov et al. [KSB21] focus on another specific
class of integer linear programs. They restrain each explanation to be based on the change of a single input parameter,
that must be involved in the objective function but not in the constraints. This again limits the application scope of
the proposed method. Besides, the three works aim at providing explanations about one to three different topics in the
solution: e.g. [LKS18] only deals with explanations about why a given task is scheduled at a given time in the solution.
To sum up, all these works rely on assumptions which strongly limit their applicability and make it challenging to employ
the proposed explanation methods for other CO problems such as the WSRP, hence the need to develop new methods.

Research issues. However, designing a new approach for automatically generating explanations for decision-makers
using WSRP-solving systems raises several challenging open research issues.

• What are explanations? How can they be mathematically modeled in a CO context, and especially in a WSRP
context? Can we develop models that handle various explanation types and a large diversity of topics?

• How can explanations be computed? Is it possible to devise polynomial-time algorithms for explanation compu-
tation? Do we need to resort to solving mathematical programs? Are there computation techniques that are efficient
enough to be compatible with near-real-time use of explanations by decision-makers?

2https://www.darpa.mil/program/explainable-artificial-intelligence

2

• How can explanations be communicated? Can explanations be presented in text form? Can we express explana-
tion texts using a vocabulary that is adapted to decision-makers?

1.2 Proposals and contributions
This PhD thesis is a first attempt at addressing the research issues mentioned in the previous subsection: a framework,

algorithms and a system are designed, aiming at modeling, computing, generating and communicating explanations about
solutions of a WSRP use case to the end-users of a system solving this CO problem.

Proposals We first devise an original framework aiming at modeling the explanation process in a CO context, specifically
applied to our WSRP use case. End-users initiate this process by making an observation about a solution and then request
an explanation by formulating a question related to this observation. Observations are assumed to focus on alternative
facts that end-users would have expected to see in the solution and are assumed to be inherently linked to solution
neighborhoods - a concept drawn from the Local Search literature and widely employed in algorithms for solving various
CO problems. The spectrum of topics covered by these observations can be quite large as we can potentially leverage any
solution neighborhood to define an observation topic. To allow the expression of observations, we provide the end-users
with banks of predefined template texts. From a given observation, three types of questions can be formulated resulting
in three types of explanations: either contrastive, scenario or counterfactual. Contrastive explanations clarify why one
fact occurred in a solution in contrast to an alternative fact. Scenario explanations describe how user-defined changes in
the instance parameters affect a fact observed in the solution. Counterfactual explanations aim at identifying how data
could be changed in the input instance to obtain a user-defined alternative solution. Just like observations, questions are
expressed thanks to template texts.

From a CO point of view, these questions can be interpreted as the formulation of one or several decision problems.
Basically, these decision problems amount to asking whether there exist a feasible and better solution of the problem
within the neighborhood induced by the end-user question. Regardless of the question type, we show that answering these
decision problems comes down to determining whether a mathematical program, we call the foil model, is feasible. We
thus propose a mathematical definition of explanations based on the feasibility of this foil model.

We then conceive a method for producing explanations of various types (contrastive, scenario or counterfactual) taking
the form of concise texts written in high-level vocabulary adapted to end-users. Given a question about an alternative fact
that end-users expected to see in a solution, our method consists essentially in identifying another solution that we term
“support solution”. This support solution essentially corresponds to the “best” solution neighboring the end-users’ solution
that satisfies the alternative fact. It is rigorously defined as the best feasible solution or the “nearest-to-feasibility” solution
within the neighborhood inherently related to the question. Subsequently, from the content and properties of the support
solution, explanatory information can be extracted. This information is then used to fill pieces of template texts which we
arrange together to form an explanation text. In order to compute the support solution, we develop either polynomial-time
algorithms or algorithms that resort to solving Integer Linear Programming (ILP) models. Numerical experiments show
that our algorithms have execution times that are mostly compatible with near-real-time use of explanations by end-users.

We finally propose an original system design for structuring the interactions between end-users and the method that
we develop for generating explanation texts. Such a system enables end-users to raise questions about a solution of a
WSRP instance and receive explanation texts in return. It also enables them to explore the set of feasible solutions as well
as to alter the parameters of the instance, if it helps end-users getting a desired alternative fact. This system, along with
the method and algorithms for generating explanation texts, are integrated into a Graphic User Interface (GUI) prototype
that we have implemented as a way to demonstrate the potential and interest of our proposals as a whole.

Main contributions The main contributions of this thesis are the following ones.
• A comprehensive framework modeling the explanation process in a CO context. We conceive an original

framework that models the explanation process in a CO context, specifically applied to our WSRP use case. This
framework leverages the concept of neighborhood to provide explanations on a wide range of topics. Furthermore,
our framework is flexible enough to handle contrastive, scenario and counterfactual explanations depending on the
preferences of the end-users. This contrasts with most previously published works which focused on explaining a very
limited number of aspects of the solution of a CO problem and could provide a single type of explanation. Finally, it
interprets each textual question asked by the end-users in CO terms, reformulating it as a decision problem (or a set
of decision problems). This enables us to propose a formal definition of an explanation based on the feasibility of a
mathematical program called the foil model. To the best of knowledge, this is the first time such a formal definition
is provided in the context of a CO problem.

3

• An efficient generation of user-centered explanation texts. We propose a novel method for generating expla-
nation texts of different types, with a vocabulary adapted to end-users, in the context of our WSRP use case. Our
method relies on efficient algorithms for computing a support solution, extracts from it relevant information and
populates explanation template texts.

• An interactive system design. We introduce an original system design for structuring the interactions between
our explanation-generation techniques and the end-users who receive the explanation texts. This system serves as
the basis for a GUI prototype demonstrating the practical applicability and potential benefits of our approach.

Our explanation-modeling framework was initially introduced in [LGMO22] while focusing only on contrastive ex-
planations. Moreover, our methods for computing and generating user-centered explanation texts were presented in
[LGMO22, LGMO23] for the case of contrastive and counterfactual explanations. The material presented in this manuscript
thus broadens these works by introducing a modeling framework and explanation generation methods able to deal with
contrastive, scenario, and counterfactual explanations.

1.3 Manuscript structure
The remainder of this manuscript is organized as follows.
Chapter 2 reviews related literature about explanations in various fields from social sciences to CO. We first present a

few theoretical elements and principles about explanations from the perspective of social sciences. We then discuss works
dealing with explanations in AI, in OR and more specifically in CO. This enable us to clarify where this thesis stands
relatively to the explanation-related literature.

Chapter 3 specifies the Workforce Scheduling and Routing Problem use case for which we aim at developing a method to
explain its results. We detail the assumptions and the characteristics of this use case. We then provide an ILP formulation
of it. Finally, we introduce various notions related to the WSRP. We focus in particular on solution neighborhoods and
their related solution transformations as these notions will play a key role in our explanation-modeling framework.

Chapter 4 presents our framework for modeling the explanation process. We first describe what end-user observations
are about and how questions can be formulated based on such observations. We then translate these questions expressed
in common language into mathematical terms involving mathematical programs and end up providing a definition of
explanations relying on the feasibility of such programs.

Chapter 5 deals with our methods and algorithms for computing and generating explanation texts. We describe them
for each of the three types of explanations: contrastive, scenario and counterfactual explanations. Numerical experiments
are performed in order to evaluate the time efficiency of our generation techniques on large-scale instances and solutions.

Chapter 6 describes our system for structuring the interactions between the end-users and the methods that we
develop for generating explanation texts. We first detail its general design, how it We then present the graphic user
interface integrating this system that we have implemented as a proof of concept.

Chapter 7 finally sums up the contributions of this manuscript and suggests perspectives.

4

Chapter 2 Literature related to explanations
2.1 Introduction

Before being a subject of research in the computer science fields such as Artificial Intelligence (AI), Operations Research
(OR) or Combinatorial Optimization (CO), “explanation” is above all a common language term and a concept familiar to
all of us. But what is exactly an explanation? What contributes to the quality of an explanation? What are the underlying
processes of explanations? In the light of these questions, we believe it is appropriate to clarify what is commonly meant
by the term “explanation”, especially if we aim in this thesis at designing effective explanation methods. Thus, before
delving into the computer science world, we propose to take a brief glance at what social sciences have learned, modeled
and concluded about the way humans produce, formulate and perceive explanations.

This chapter provides an overview of the existing literature on explanations across various fields, spanning from social
sciences to CO. This overview then helps us to position the thesis with respect to this existing literature.

The remainder of the chapter is organized as follows. Section 2.2 presents some insights about explanations from the
perspective of social sciences and then sets out some guidelines to help us in the development of methods for explaining
results in a CO context. Section 2.3 deals with the literature about explanations in AI and identifies key characteristics of
explanations in this domain. Section 2.4 reviews works related to explanations in the specific fields of OR including CO.
Section 2.5 concludes this chapter and positions this thesis with respect to the existing literature on explanations.

2.2 A few insights about explanations from social sciences

This section provides some insights about explanations from the perspective of social sciences. We first present a
definition of an explanation and then detail some of its essential characteristics. We finally outline a few conclusions to
guide us towards our goal in this thesis, namely developing methods for explaining solutions of a given CO problem, a
Workforce Scheduling and Routing Problem (WSRP) use case, to the end-users of a system solving this problem.

Definition of an explanation. As described by Miller in [Mil19], the notion of explanation refers to a product but
also to processes involving an explainer and an explainee.

1. From the perspective of the explanation giver, an explanation is first and foremost a diagnosis of causality, in other
words, a process of determining the causes behind the fact about which the explanation-receiver is wondering and
investigating.

2. From the perspective of the explanation receiver, an explanation is rather the product of this diagnosis that the giver
communicates to them.

3. Finally, explanations are also a process of knowledge transfer between the giver and receiver.
In this thesis, we employ the term “explanation” to refer essentially to the product. Whenever our focus shifts towards the
processes of causality diagnosis and knowledge transfer, we name them as such, and not as explanation.

In relation with the above definition of explanations, we propose in the following paragraphs to describe some essential
characteristics of explanations from which we will draw some guidelines for the development of our explanation methods
in the next subsection.

Explanations are part of a conversation. As a process of knowledge transfer, explanations occur within a conversation
i.e. a social interaction involving speakers making several contributions.

As a consequence, explanations must follow the rules that guarantee the quality of a conversation. According to Grice
in [Gri75], speakers involved in a conversation must adhere to a cooperative principle, i.e. they must make contributions
that are appropriate to the conversation, its context and the other speakers. To meet this principle, Grice lists four maxims
about the speakers’ contributions.

• Quality : “Make sure that the information is of high quality. Do not say things that you believe to be false; do not
say things for which you do not have sufficient evidence.”

• Quantity : “Provide the right quantity of information. Make your contribution as informative as is required; do not
make it more informative than is required.”

• Relation: “Only provide information that is related to the conversation. Be relevant.”
• Manner : “Be perspicuous. Avoid obscurity of expression; avoid ambiguity; be brief (avoid unnecessary prolixity); be

orderly.”

5

Relatively to our goal of designing explanation methods for end-users in a CO context, providing explanations that
satisfy the maxim of quality seems quite natural and even necessary. However, the maxims of quantity, relation and manner
may demand more careful consideration to be met. Indeed, it may be challenging to i) understand the issues about which
end-users expect explanations (relation), ii) find the right compromise between a long exhaustive explanation text, detailing
point by point very specific arguments, and a short explanation text, involving abstract argument (quantity), and iii) use
an adapted vocabulary (manner).

Explanations are selective. As diagnosis of causality and products of this diagnosis, explanations are selective: people
rarely expect an explanation that consists of a complete causality diagnostic [Mil19].

This selectivity characteristic has also to do with Grice’s conversation maxims of quantity and manner: “Provide the
right quantity of information” and “be brief”.

Explanations are mostly contrastive. As products and process of knowledge transfer, explanations are often con-
trastive [Lip90, Hil90]: they justify something in contrast to something else. In other words, explanations often answer
questions, also said contrastive, that have the following form “Why this event rather than that other event?”. In this
contrastive question, “this event” is called the fact, while “that other event” is called the foil.

Building upon the theoretical elements that we introduced above, we can now formulate some guidelines to direct us
in our aim of designing methods for explaining outcomes of a CO problem to the end-users of a system solving such a
problem.

Guidelines for the development of our explanation methods. Suppose that end-users are wondering about a fact
observed in a solution and would like to obtain explanations about it. Below are some guidelines that we, explanation
designers, can follow while developing our methods.
(G1) Given a fact observed in a solution, there may be many causes contributing to it so that presenting all of these

causes to the end-users may be impractical. In such situations, in accordance with the selectivity characteristic of
explanations, as well as the conversation maxims of quantity and relation, we must identify and communicate to
end-users a limited number of causes so that it remains concise and graspable for end-users. In addition, in order
for end-users to understand our explanations, we must pay attention not to use too technical concepts which could
be obscure for them. In other words, we must produce explanations that are adapted to the end-users in terms of
size and vocabulary.

(G2) Since research in social sciences shows that people usually give and receive explanations that are contrastive, we
must consider such an explanation type, i.e. explaining the fact observed by end-users not per se but relatively to
some other outcome (foil) that did not occur.

(G3) Since explanations are a part of a conversation i.e. an interaction, we seek to enable end-users to interact with our
explanation methods and request, if needed, not just one but several consecutive explanations, as long as they feel
the need to better understand the fact they observed in the solution.

After clarifying the meaning of the common term “explanation” from the perspective of social sciences and after
establishing some guidelines for the design of explanation methods, our focus can now turn towards examining explanations
as a research subject in the domains of AI and OR.

2.3 Explanations in Artificial Intelligence

As mentioned in Section 1.1, in the past decade, there has been a rising trend of contributions in explainable AI (XAI)
[BADRDS+20]. XAI methods from these contributions can be described according to several key characteristics, as shown
in Figure 2.1: i) the target audience, ii) the scope, iii) the type, iv) the trigger, and v) the form of the explanations
produced by the methods. In the following paragraphs, we discuss these characteristics in a cross-disciplinary way, by
referring to works about explanations from various AI fields, namely Expert Systems (ES), AI Planning (AIP), Machine
Learning (ML) and Constraint Satisfaction Problems (CSP).

6

Key characteristics
of XAI methods

Target
audience

Algorithm
designer

Business
analyst

End-user

Scope of
explanations

Local

Global

Type of
explanations

Contrastive

Scenario

Counter-
factual

. . .

Form of
explanation

Textual

Template
text

. . .

Visual

. . .

Trigger of
explanations

Actions
on User
Interface

Questions

. . .

Figure 2.1: Key characteristics of XAI methods

Target audience. With the aim of explaining the results or the functioning of an AI system, it is essential to determine
the target audience, as the appropriate content and form as well as the intended goals of the explanations that are presented
to them may depend on it [BADRDS+20, MZR21]. Whatever the considered AI field, the literature generally identifies
three target audiences: in ES [WT92], the end-user of an expert system, the domain expert who is involved in the
acquisition of the expert system and the knowledge engineer who designs the expert system; in AIP [CSK20], the end-user
who interacts with the AIP system, the domain designer and the algorithm designer - the two latter ones being the AIP
twins of the ES domain expert and knowledge engineer; in ML [MZR21], the AI novice, the data expert and the AI expert.

In our work, we assume that the target audience is an end-user of a WSRP-solving system who may not have any
expertise in optimization. This audience is analog to the end-user in ES and AIP or the AI novice in ML. In DecisionBrain’s
context (Section 1.1), such an audience corresponds, within their clients’ organizations, to the planners, i.e. people in
charge of designing human resources’ plannings thanks to the optimization tool, as well as the employees affected by the
decisions of the planners who may question them. Thus, we seek to adapt the explanations generated by our methods to
this audience.

7

Scope of explanations. Explanations can be classified according to their scope, also known as focus [WT92] or
interpretation scale [MZR21]. The XAI community generally identifies two scopes of explanations, namely local and global
scopes. Originally, in the context of Expert Systems (ES), Wick and Thompson [WT92] partition explanations into two
groups. The first is made of process-related explanations, which involve information on the way the system works and
generally address “how” questions. The second is made of solution-related explanations, which involve information about
the solutions themselves and usually consist of arguments supporting them. In more recent XAI works e.g. [DVK17,
GMR+18, LGM20, MZR21], authors rather refer to the first group as global explanations and to the second one as local
explanations. As mentioned by Mohseni et al. in [MZR21], local explanations better suit AI novices than global ones as
they are less overwhelming.

Since the target audience in our work is an end-user, we design local explanations: our explanations focus on solutions
and aim at describing causes justifying some intriguing topics that can be observed in them.

Explanations can always be seen as answers to some questions, even though these questions are not always made explicit.
Thus, many works on explanations commonly name types of explanations based on characteristics of their corresponding
questions, or vice versa. Especially, works like [MZR21] name types of explanations based on the interrogative forms of
their corresponding questions: “how”, “why”, “why-not”, “what-if”, “how-to” and “what-else”. This categorization is not
completely rigorous, since a given type of explanation may be suitable for answering questions corresponding to different
interrogative forms as noted in [LGM20]. However, it is a convenient and intuitive way to name, compare and delineate
different types of explanations. For this reason, we use it in what follows to name types of explanations.

Types of explanations. As previously mentioned, there are many interrogative forms for the questions to be answered,
and consequently many types of explanations. Among them, two types are widely used in the XAI literature: “why-
not” explanations, also known as contrastive explanations, and “how-to” explanations, also known as counterfactual
explanations. We are also interested in “what-if” explanations which occur in fewer XAI works. We call this last type of
explanations: scenario explanations.
• Contrastive / “why-not” explanations. Lipton [Lip90] defines a contrastive question as a question having the

following form: “why this observation rather than that one” or equivalently “why not that other observation instead
of this one?” - this second version making the “why-not” name evident. “This observation” / “this one” is called the
fact and refers to a detail, a property, that can be observed in the result. “That one” / “that other observation” is
the foil and refers to a hypothetical other aspect that the person who is asking the question would have expected to
observe instead. Besides, the foil of the question may sometimes be implicit, especially when the fact is a negation.
In this case, the contrastive question becomes simply: “why is this fact?”.
As noted in [Mil19], some authors refer to the foil as the counterfactual case which makes sense as it is literally
a counter-fact i.e. an alternative to the fact observed in the output. However, naming the foil this way may be
misleading as the term “counterfactual” is also used to name a hypothetical alternative input in counterfactual
explanations (see next bullet point). For this reason, in this work, we adopt the term foil.
Explanations answering contrastive questions are usually called contrastive explanations. In [Mil19, Mil21], Miller
claims that most of the questions asked by people starting with “why” are contrastive, that such questions are usually
asked when a surprising or abnormal fact is observed and that contrastive explanations are simpler to deal with for
both the questioner and the explainer. Reflecting Miller’s position, several works in XAI aim at providing contrastive
explanations, whether in AIP [SSK18, CCK+19, Lin20] or in OR [ČLMT19, KSB21].

• Counterfactual / “how-to” explanations. Consider an input and its corresponding output obtained thanks to an
AI system. A counterfactual explanation determines and presents a hypothetical alternative input that would have
resulted in a different output such as a user-specified output [WMR18, MZR21]. An explicit way to ask for such
counterfactual explanations is to use questions starting with “how to” (e.g. “how to obtain this other output?”) -
which is the reason why counterfactual explanations are also termed “how-to” explanations. However, counterfactual
explanations can also be used for answering contrastive / “why-not” questions of the form “why is this fact and not
this foil?”. In this case, the counterfactual explanation corresponds to exhibiting a change in the input that would
turn the fact mentioned in the question into the foil [KSB21].

• Scenario / “what-if” explanations. Consider again an input of an AI system. A what-if explanation, or scenario
explanation, involves a demonstration of how changes in the input affect the output returned by the AI system
[Lin20, MZR21]. According to the etymological meaning of the term "counterfactual", a scenario explanation is
also a counterfactual explanation, since it considers a hypothetical alternative input data, in other words a counter-
input data, and then looks at the consequences on the output data. However, the distinction we draw between a
counterfactual and a scenario explanation lies in the responsibility for identifying the hypothetical alternative input.
In the former, it falls upon the explanation giver to determine the hypothetical alternative input, while in the latter
it is left to the explanation receiver to define it.

8

In this thesis, we design original methods for modeling and generating contrastive, scenario or counterfactual expla-
nations. Considering contrastive explanations as part of the types of explanations that we aim to produce is in line with
guideline (G2), which promotes the contrastive type of explanations (see Section 2.2).

Trigger of explanations. Many works in eXplainable AI (XAI) concentrate their efforts on modeling, computing or
presenting explanations regardless of any interactions with the target audience and thus do not discuss how explanations are
triggered: see e.g. [KSB21]. Other works take into account interactions with the target audience and specify ways to trigger
explanations. For instance, [LKS18, ČKL+20] allow the audience to apply actions on a graphic user interface (e.g. clicks
or drag-and-drops) and assume that these actions implicitly correspond to asking questions about the output. However,
such a way to trigger explanations is only possible when there is a limited number of topics that the audience wants to
question. In order to allow the end-user to ask a wider range of questions and to obtain explanations on many aspects of
the output, it is necessary to consider questions explicitly formulated as texts, as done in [SS87, CTJ89, CCK+19, Lin20].

In our work, we choose to trigger explanations with end-user questions, which allows to generate explanations on many
aspects of the solution. This is a first step towards guideline (G3) which relates to the conversational and interactive
nature of explanations (see Section 2.2).

Form of explanations. There are various ways to present the explanations to the audience [MZR21]. One can resort
to visual explanations by depicting their explanatory content using visual elements like images, graphs, etc. For instance,
in Deep Learning, some works e.g. [ZF14, SVZ14] use a saliency heatmap to emphasize important features in the input
image; in Artificial Intelligence Planning (AIP), in [KKM+21], Krarup et al. use color to highlight differences between
the initial solution and the one computed as part of the explanation. One can also resort to textual explanations which
express their explanatory content using words or phrases. A possible approach is then to use template texts and fill them
in with computed data [SF96, LKS18]. Another approach is to use Natural Language Generation techniques to automate
the verbalization of explanations [FSPC18, POP21].

This thesis deals with textual explanations that are expressed thanks to template texts and does not consider visual
explanations.

In this section, we discussed several key ingredients related to the design of an explanation method in the broad field
of AI. In the next one, we study how the notion of explanation has been addressed in the specific field of Operations
Research.

2.4 Explanations in Operations Research

We first examine papers dealing with explanations in Constraint Satisfaction Problems (CSP). We then review works
seeking to provide explanations for Combinatorial Optimization (CO) problems, which is the application context of this
work.

Explanations in Constraint Satisfaction Problems. There are several works on explanations in the field of CSP. In
most of them, e.g. [dK86, Gin93, Jun04, CJ06], the term explanation (or equivalently nogood, removal explanation, conflict
set) is used to name a subset of constraints that mathematically justifies either the infeasibility of the CSP instance or, within
the solving process, the current state of the variables domains. Some works, e.g. [Jun04], look for the minimal conflict sets;
others, e.g. [dK86, Gin93, CJ06], exploit such sets in order to help the solving process. The corresponding explanations
are expressed in mathematical terms and may therefore be useful exclusively for the CSP algorithms designers. Actually,
few works consider providing explanations to non-expert end-users, hence few works consider expressing explanations in a
way that is adapted to this audience. Among them, [SF96, BGG21] focus for instance on explaining how to solve, step
by step, the given CSP instance thanks to verbal or visual elements while [JO01] seek to explain infeasibility by naming
conflict sets of constraints. In any case, in these works, there is a single topic to explain to the audience: the feasibility /
infeasibility of the instance.

However, in our Workforce Scheduling and Routing Problem (WSRP) context, the end-user is assumed to have on
hand a feasible solution and to look for explanations about other topics, e.g. “Why is the workforce member Ellen not
performing this electricity task while her route goes next to it?” or “Why is Fabian not performing this plumbing task
in the morning as his schedule is partially empty?”. Consequently, rather than looking for explaining why an instance is
feasible, we are interested in explaining why a solution is more relevant than others.

9

Explanations in Combinatorial Optimization contexts. Beside these works dealing with explanations in CSP, there
are some other OR-related works on user-centered explanations e.g. [LKS18, ČLMT19, KSB21].

Ludwig et al. [LKS18] focus on a specific heuristic scheduling system that is based on a greedy algorithm and present
a facility that is able to provide to an end-user of this system a verbal explanation to the question “How has this task been
scheduled at this time in the returned schedule?”. The explanation, which is triggered by clicking on the task of interest on
an interface, takes the form of a list of sentences detailing the reasoning steps that have driven the system to schedule the
task at a given time. In other words, the explanation consists in describing part of the system execution on an instance,
which supposes that the end-user understands and agrees that the scheduling problem is solved according to the heuristic
approach of the system and not another one. In our context, we would like the explanations to be independent from the
algorithmic approach used to solve the WSRP. Most often, the functioning of a WSRP-solving algorithm is not greedy so
that detailing its steps may be too technical and overwhelming for end-users. Moreover, such a solving algorithm is likely
to be updated over time, which would make our explanation techniques obsolete.

Čyras et al. [ČLMT19] study a minimum makespan scheduling problem. They define a method for explaining why a
given schedule is (not) feasible, (not) locally optimal or (not) satisfying fixed user decisions, by extracting information from
abstract argumentation frameworks. However, these argumentation frameworks relies on the implicit assumption that the
problem can be formulated as a mathematical program involving exclusively binary variables. This assumption prevents
us from applying their method to the WSRP since it is formulated as an integer linear program as it will be presented in
Subsection 3.2.2.

Korikov et al. [KSB21] describe a method based on inverse optimization for producing counterfactual explanations.
Each explanation is assumed to be based on the change of a single instance parameter, which must be involved only in
the objective function and not in the constraints. This assumption limits the application of their method. Especially, in
the case of the WSRP, all the parameters involved in the objective function are also involved in the constraints as it will
be presented in Subsection 3.2.2.

In summary, these existing works have specific application limitations, making it challenging to employ the explanation
methods they developed for other CO problems such as the WSRP. Thus, there is a need to propose new explanation
approaches adapted to our WSRP context, and potentially applicable to other CO problems.

2.5 Conclusion
In this chapter, we reviewed the concept of explanation across various fields spanning from social sciences to CO. Such

a review was essential for our upcoming aim of designing efficient methods explaining solutions of a CO problem, a WSRP
use case, to the end-users of systems solving such a problem.

We initially acknowledged that the notion of explanation extends beyond the field of computer sciences, since "expla-
nation" is first and foremost a term from everyday language. This led us to study a few insights about explanations learned
from works in social sciences. We recognized the dual nature of explanations as both a process involving a giver and
receiver and as a product of that process. Noticing that explanations are part of a conversation, we emphasized the need
for explanation designers to adhere to the cooperative principle by following the maxims of quality, quantity, relation and
manner as regards the content of our explanations. We acknowledged the inherent selectivity and prevalent contrastive
nature of explanations. This helped us in defining a set of guidelines for our work.

We then transitioned our review of the concept of explanations into the general field of AI. We examined key char-
acteristics of explanation methods in AI, including the target audience, scope, types, triggers, and forms of explanations,
which helped us to position our work relatively to this literature. In addition, we focused on works related to explanation
in OR, in order to analyze how explanations have been addressed in this domain, especially in CO, and revealed the need
for methods that go beyond the limitations of the current approaches.

In conclusion, the positioning of this thesis is the following one. The main target audience of our explanations consists
of the end-users of an CO system that solves our WSRP use case. Our explanations are local by focusing on a given
solution of a WSRP instance. They can be of three types: either contrastive, scenario or counterfactual. They take the
form of texts built thanks to templates. They are triggered by questions, also formulated thanks to template texts, which
allows us to consider various topics to explain on a given WSRP solution. This positioning is summarized in Figure 2.2,
which is based on Figure 2.1 where characteristics that are out of the scope of this thesis are faded.

10

Ingredients of
explanation

methods

Target
audience

Algorithm
designer

Business
analyst

End-user

Scope of
explanations

Local

Global

Type of
explanations

Contrastive

Counter-
factual

Scenario

. . .

Form of
explanation

Textual

Template
text

. . .

Visual

. . .

Trigger

Actions
on User
Interface

Questions

. . .

Figure 2.2: Positioning of the thesis in relation to key characteristics of XAI methods

11

12

Chapter 3 Background on the Workforce Scheduling
and Routing Problem (WSRP)

3.1 Introduction

This chapter deals with the Workforce Scheduling and Routing Problem (WSRP) for which we aim at developing an
approach for explaining its solutions to the end-users of a WSRP-solving system. The WSRP can be stated as follows.
Given a set of mobile employees and a set of geographically dispersed tasks, the problem consists in building and assigning
to each employee a pair of route and schedule which defines the tasks that they should perform, in what order and at
what times, over a certain horizon. The objective is to design a family of route-schedule pairs of minimum cost, which
accommodates as many tasks as possible, while satisfying a set of constraints.

In Section 1.1 we outlined that the WSRP arises in various contexts, leading to multiple variants of the problem. For
a comprehensive literature review about the WSRP, we refer the reader to e.g. [CSLSQ16]. Consequently, in this chapter,
we delineate the specific characteristics of our WSRP use case. This includes specifying the contents of instances and
solutions, the objective functions to optimize and the constraints to satisfy. We also introduce a mathematical formulation
of this use case in the form of a bi-objective Integer Linear Programming (ILP) model which we refer to as main model.

As mentioned in Section 1.2, an essential feature of our general explanation approach is the use of solution neigh-
borhoods. In our explanation-modeling framework described in Chapter 4, neighborhoods are the bedrock of the process
leading from end-user observations and questions about solutions to explanations. In our algorithms designed for computing
and generating explanations presented in Chapter 5, neighborhoods are explored and analyzed in order to find explanatory
information to provide to the end-users. This concept of neighborhoods is drawn from the Local Search (LS) literature
where a neighborhood of a given solution is the set of all potential other solutions obtained by applying a transformation
on this solution. For instance, in our WSRP context, a transformation can be inserting a task within an employee planning,
exchanging a task performed by an employee with another task not performed by this employee or reordering tasks within
an employee planning, among others. Thus, in this chapter, in addition to specifying our WSRP use case, we expound
on various neighborhoods of WSRP solutions that will serve later in Chapters 4 and 5 for both modeling and computing
explanations. We introduce various categories of transformations as well as general notions such as route-equality, Back-
ward Earliest start Time (BET), Forward Latest start Time (FLT) and feasibility gap, which will be used throughout this
manuscript.

The remainder of this chapter is organized as follows. Subsection 3.2.1 specifies our WSRP use case by detailing its
general characteristics and providing a bi-objective ILP formulation of it. Section 3.3 deals with solution neighborhoods.

3.2 Definition of our WSRP use case

3.2.1 General characteristics

In this subsection, we specify general characteristics of our WSRP use case. We first detail the contents of instances
and solutions and then define two criteria use for comparing solutions.

Instance. In our use case, we consider a scheduling horizon of one day i.e. 1440 minutes. Times are expressed in
minutes from 12:00AM (e.g. 8:00AM ≡ 480).

An instance I involves a set of n mobile employees E = {1, . . . , n} and a set of m tasks T = {1, . . . , m}.
Each employee i ∈ E is characterized by a name, a skill level skei ∈ N, a home location and a working time window
[lbei, ubei] ⊆ [0, 1440]. Each task j ∈ T is characterized by a required skill level sktj ∈ N, a location, a performing
duration dtj ∈ N and an availability time window [lbtj , ubtj] ⊆ [0, 1440].

In addition, as each employee i departs from their home location at the beginning of their working day and returns to
it at the end of the day, we introduce the notations di and ri for referring respectively to the departure and return events
of i. Observing that tasks, departures and returns play similar roles, we introduce the notion of activity j to refer either
to a task, a departure or a return. Then, for each employee i, we define a personal set of activities Ai = T ∪ {di, ri}.

Finally, assuming that all employees travel at the same speed, we note trjk ∈ N the travel time needed by any employee
to go from activity j to activity k.

13

Plannings and solution. Given an instance I, a solution is a family S = ((Ri, Ci))i∈E mapping each employee i ∈ E
to a pair (Ri, Ci). The route Ri is a sequence of activities of Ai that starts with di and ends with ri. It defines the
tour done by i. The schedule Ci is a sequence of start times stj ∈ N that defines when i starts performing each activity
j in Ri. In other words, let p ∈ N be the number of tasks performed by i, then Ri = (di, j1, j2, . . . , jp, ri) and
Ci = (stdi

, stj1 , stj2 , . . . , stjp
, stri

) - where we do not indicate that j1, j2, . . . , jp depend on i for readability purpose.
Such a route-schedule pair is what we call a planning.

Figure 3.1 below is based on Figure 1.1 from Section 1.1. It represents a solution of a WSRP instance. We recall that
each employee is related to a color. The graph on the left represents routes: colored dots correspond to tasks performed
by employees and gray ones to non-performed tasks, while squares correspond to employee starting locations, which we
call home for convenience. The Gantt chart on the right depicts schedules: high and colored rectangles represent tasks;
small and gray ones represent employee traveling times to go from one task to another; for both groups, the width of a
rectangle matches the duration of what it represents.

14.5 14.75 15.0 15.25 15.5 15.75 16.0 16.25

47.25

47.5

47.75

48.0

48.25

48.5

longitude

lat
itu

de

El

2

Ad

Fa

Ca

12

15

27

31

1

3 7

8

17

26

30
6

14

16

19
20

25

28

910

11

24

4

13

18

21
2229

25

23

El

Al

Ad

Fa

Ca

7AM 9AM 11AM 1PM 3PM 5PM 7PM

hour

7 30 3 26 1 17 8

28 16 25 14 20 6 19

11 9 10 24

13 18 21 29 4 22

5 23 2

Figure 3.1: Routes (left) and schedules (right) of a solution of a WSRP instance.

Throughout this document, we will often use the solution represented in Figure 3.1 as a small illustrative example.
The instance associated with this solution involves 5 employees and 31 tasks, whose data are detailed in Table A.1 of
Appendix A.1. The routes and schedules of this solution are described in Table A.2 in Appendix A.2. For instance,
the planning (R1, C1) of employee 1, named Ellen, is given by R1 = (d1, 7, 30, 3, 26, 1, 17, 8, r1) and C1 =
(504, 525, 567, 662, 720, 840, 900, 1009, 1080) and the planning (R4, C4) of employee 4, named Fabian, is given by
R4 = (d4, 13, 18, 21, 29, 4, 22, r4) and C4 = (480, 482, 564, 656, 738, 866, 925, 1080).

Total working and travel times. All solutions are not equally good. Various quantitative criteria can be used to
compare solutions. In our use case, we consider two main criteria: the total working time and the total travel time. Given
a solution S, they are respectively noted twt(S) and trt(S), and computed as follows:

twt(S) =
∑
i∈E

∑
j∈T ∩Ri

dtj and trt(S) =
∑
i∈E

∑
j,k∈Ri

consecutive

trjk.

We consider that maximizing the total working time is more important than minimizing the total traveling time. This
allows us to define the following order over the set of solutions. Given two solutions S and S ′, S is considered better than
S ′, noted S ≥ S ′, if (twt(S),−trt(S)) ≥ (twt(S ′),−trt(S ′)) with a lexicographic order.

Now that we have defined the content of both instances and solutions for our WSRP use case, as well as a bi-criterion
on the solutions, we can develop in the next section a mathematical programming model of this WSRP.

14

3.2.2 Integer Linear Programming (ILP) model

In this subsection, we provide a mathematical formulation of our WSRP use case in the form of a bi-objective Integer
Linear Programming (ILP) model, which we call main model. Given an instance I, the main model related to I is noted
mm(I) and is presented in Model 1. Its decision variables, objective function, constraints are detailed below.

lex max
(∑

i∈E

∑
j∈T

∑
k∈Ai, k ̸=di,j

Uijk dtj , −
∑
i∈E

∑
j∈Ai, j ̸=ri

∑
k∈Ai, k ̸=di,j

Uijk trjk

)
(M1.1)

s.t.∑
k∈Ai, k ̸=di

Ui,di,k = 1 ∀ i ∈ E (M1.2)∑
j∈Ai, j ̸=ri

Ui,j,ri
= 1 ∀ i ∈ E (M1.3)∑

j∈Ai, j ̸=k,ri

Uijk =
∑

j′∈Ai, j′ ̸=di,k

Uikj′ ∀ i ∈ E , ∀ k ∈ T (M1.4)∑
k∈Ai, k ̸=di,j

Uijk ≤ 1{sktj≤skei} ∀ i ∈ E , ∀ j ∈ T (M1.5)∑
i∈E

∑
k∈Ai, k ̸=di,j

Uijk ≤ 1 ∀ j ∈ T (M1.6)∑
i∈E

∑
k∈Ai, k ̸=di,j

Uijk lbtj ≤ Tj ∀ j ∈ T (M1.7)

Tj ≤
∑
i∈E

∑
k∈Ai, k ̸=di,j

Uijk (ubtj − dtj) ∀ j ∈ T (M1.8)∑
i∈E

Ui,di,k(lbei + trdik) ≤ Tk ∀ k ∈ T (M1.9)

Tj + dtj +
∑
i∈E

Uijk trjk ≤ Tk +
(

1−
∑
i∈E

Uijk

)
ubtj ∀ (j, k) ∈ T 2, j ̸= k (M1.10)

Tj + dtj ≤
∑
i∈E

Ui,j,ri
(ubei − trjri

) +
(

1−
∑
i∈E

Ui,j,ri

)
ubtj ∀ j ∈ T (M1.11)

Uijk ∈ {0, 1} ∀ i ∈ E , ∀ j ∈ Ai \ {ri}, ∀ k ∈ Ai \ {di, j}

Tj ∈ N ∀ j ∈ T

Model 1: Main model mm(I) related to a WSRP instance I.

Decision variables. Two sets of decision variables are used in mm(I). The first set is related to the temporal
dimension of the WSRP, we call them start time decision variables. For each task j ∈ T , the start time decision variable
Tj is an integer decision variable defining the time at which j starts to be performed by an employee - if j is performed.
The second set of decision variables is related to the spatial dimension of the WSRP, we call them path decision variables.
For each employee i ∈ E and each pair of activities (j, k) ∈ (Ai \ {ri}) × (Ai \ {di, j}), the path decision variable Uijk

is a binary decision variable which is equal to 1 if i performs activity j and then moves to activity k, and to 0 otherwise.
Note that, thanks to such binary variables, we can build expressions to track whether task j is performed by employee i
and whether task j is performed by any employee, respectively as follows:∑

k∈Ai
k ̸=di,j

Uijk and
∑
i∈E

∑
k∈Ai

k ̸=di,j

Uijk.

These expressions are involved several times in the objective function and the constraints of mm(I).

Bi-objective function. In mm(I), a bi-objective function (M1.1) is maximized according to a lexicographic order:
the first objective corresponds the total working time and the second one to the opposite of the total travel time.

15

Constraints. The constraints of mm(I) are described below by groups.
• Flow constraints (M1.2) to (M1.4) ensure that each employee starts their working day from their home location, goes

from one activity to the next, without splitting into multiple directions, and ends their day at their home location.
Note that these constraints alone do not prevent subtours, i.e. loops connecting only tasks, assigned to employees
as part of their routes. However, sequencing constraints defined below will prohibit such sub-tours.

• Skill constraints (M1.5) ensure that an employee i ∈ E can be assigned to a task j ∈ T only if their skill level skei

is higher than the minimum skill level sktj required for performing j.
• Occurrence constraints (M1.6) guarantee that each task j ∈ T is performed at most once, i.e. occurs at most once

within all employee routes.
• Availability constraints (M1.7) and (M1.8) ensure that, if a task j ∈ T is performed, then it must be started and

ended within its availability time-window [lbtj , ubtj].
• Working hours and sequencing constraints (M1.9) to (M1.11) ensure that if an employee i ∈ E performs two

consecutive activities j ∈ Ai and k ∈ Ai \ {j}, then i must do so within their working time-window [lbei, ubei]
and i must have enough time to travel from j to k, after ending j and before starting k. The constraints (M1.9),
(M1.10) and (M1.11) correspond respectively to the following cases: j = di and k ∈ T ; j ∈ T and k ∈ T \ {j} ;
j ∈ T and k = ri.

Throughout this document, we will refer to the group of constraints formed by availability, working hours and sequencing
constraints, i.e. constraints from (M1.7) to (M1.11), as time constraints.

We end this subsection by discussing the relations between two ways of characterizing solutions.

Two solution characterizations. In Subsection 3.2.1, we define a solution S of an instance I as a family of employee
plannings ((Ri, Ci))i∈E . But, we could also define a solution of I as the result of mm(I), i.e. the assignment of a
value to each decision variable involved in the model. The first characterization rather corresponds to an end-user way of
representing a solution, while the second to an optimization-system way.

In most Operations Research papers, such two characterizations are implicitly equated. However, in our context, it is
important to clearly distinguish between them. As we aim at generating explanations about solutions for end-users of an
optimization system, we will have to navigate from the end-user characterization of solutions to the optimization-system
one, and vice versa. Thus, from now on, we call ILP-solution an assignment of mm(I) decision variables and note it X ,
while we save the term solution for naming a family of employee plannings, noted S.

Bijection between solution characterizations. Consider an instance I and its corresponding mm(I). Provided that
an ILP-solution X satisfies flow constraints (M1.2) to (M1.4) and does not involve any subtour, it can be easily mapped
into a solution S. We note φ such a mapping, which is a bijection. In short, given an ILP-solution X , one can build a
solution S = φ(X) as follows: the routes (Ri)i∈E can be deduced from the values of path decision variables (Uijk)ijk and
the schedules (Ci)i∈E from the values of the temporal variables (Tj)j∈T . Conversely, by following the inverse reasoning,
one can build an ILP-solution X = φ−1(S) from a solution S. For more details about φ, see Algorithms C.1 and C.2 in
Appendix C.

We illustrate this mapping with the small illustrative example of solution S represented in Figure 3.1. By applying φ−1

on S, we obtain an ILP-solution X = φ−1(S). The full description of X is given in Table B.1 in Appendix B. We give
below the part related to employee 1.

• T7 = 525, T30 = 567, T26 = 720, T1 = 840, T17 = 900, T8 = 1009;
• U1,d1,7 = U1,7,30 = U1,30,3 = U1,3,26 = U1,26,1 = U1,1,17 = U1,17,8 = U1,8,r1 = 1 and

U1jk = 0 for all other pairs of activities (j, k) ∈ (A1 \ {r1})× (A1 \ {d1, j}).

Feasible solution and feasible planning. We described above the constraints that an ILP-solution must satisfy to
be feasible. Thanks to the bijection φ, we can transpose the notion of feasibility from ILP-solutions to solutions. We say
that a solution S is feasible if its corresponding ILP-solution X = φ(S) is feasible. We also say that a planning (Ri, Ci)
is feasible if it is part of feasible solution S.

In this subsection, given an instance I, we presented the main model mm(I), a bi-objective ILP model, which
precisely defined the constraints governing the feasibility of the solutions of I. In the next section, we described various
transformations that can be applied to solutions of I defining various neighborhoods.

16

3.3 Solution transformations and neighborhoods
Throughout this section, we note S a feasible solution of a WSRP instance I. As mentioned in Section 3.1, solution

neighborhoods along with their corresponding transformations play a central role in our explanation-modeling framework
and explanation-generation methods. This is why we devote a section to detailing various transformations and neighbor-
hoods as well as organizing them into categories. In other words, the purpose of this section is to lay the groundwork for
Chapters 4 and 5 which deal with explanation modeling and generation. Before delving into the details of any specific
transformation or neighborhood, let us start by providing comprehensive definitions of for each of these two concepts. We
also introduce the notion of route-equality which is used to define categories of transformations and neighborhoods.

Transformation and neighborhood. A transformation tf is an application that applies a series of changes to the
routes and/or schedules of S resulting in a set of other solutions, which we call neighborhood and note N (tf,S). We call
neighbors or neighboring solutions the solutions of N (tf,S). Besides, we say that a transformation is feasible if there is
at least one feasible neighboring solution in N (tf,S).

Route-equal plannings and solutions. Associated with a routeRi, various schedules can be chosen, which differ from
each other in the values given to the starting times of the activities in Ri. We say that these plannings are route-equal.
This notion can then be extended to solutions. Two solutions S = ((Ri, Ci))i∈E and S ′ = ((R′

i, C′
i))i∈E are said to be

route-equal if, for each employee i, the plannings (Ri, Ci) in S and (R′
i, C′

i) in S ′ are route-equal.
From the above definitions, we can now delineate categories of transformations based on the size of their neighborhoods.

Indeed, the size of a neighborhood N (tf,S) varies depending on its associated transformation tf . For example, given a
solution, the neighborhood associated with inserting a task within an employee planning between a given pair of consecutive
activities is smaller than the one associated with inserting the same task within the same employee planning between any
pair of consecutive activities. In this work, we measure the size of a neighborhood N (tf,S) by counting the number of
disjoint subsets of N (tf,S), containing solutions that are all route-equal to each other, and then by comparing this number
to instance-related size parameters, namely the numbers of employees (denoted as n) and tasks (denoted as m). We define
below three categories of transformations and neighborhoods. These categories will play an important role in the work to
be presented in Chapters 4 and 5. Namely, our approach for computing and generating explanation texts will be based on
solution transformations, and the techniques used to do so will depend on the category of the involved transformations.

Categories of transformations and neighborhoods. We consider three categories as follows.
• Constant-size. We say that a solution transformation tf is constant-size and that the neighborhood N (tf,S) has

a constant-size structure if all the neighboring solutions of N (tf,S) are route-equal to each other.
• Polynomial-size. We say that a solution transformation tf is polynomial-size and that a neighborhood N (tf,S)

has a polynomial-size structure if the number of subsets of N (tf,S) containing solutions that are all route-equal to
each other is polynomial (non-constant) in n, number of employees in E , and m, number of tasks in T .

• Exponential-size. We say that a solution transformation tf is exponential-size and that a neighborhood N (tf,S)
has a exponential-size structure if the number of subsets of N (tf,S) containing solutions that are all route-equal to
each other is exponential in n and m.

Note that we plan to use these transformations not as part of an LS algorithm solving a WSRP but as part of a system
generating explanations on a given solution of a WSRP. This is why we consider not only constant-size and polynomial-size
transformations, but also exponential-size transformations which we would probably not consider in the deign of a LS
algorithm due to the size of their corresponding neighborhoods.

In the remainder of this section, for each of these three categories, we will introduce several “practical” transformations
which will be later involved in Chapters 4 and 5. However, before detailing them, we will first consider a few elementary
transformations. As we will see, elementary transformations are actually constant-size, but we isolate them and refer to
them as “elementary” because we will mostly use them to define the practical transformations. Furthermore, a crucial
aspect for the numerical tractability of our explanation-generation algorithms lies in our ability to efficiently check whether
a neighborhood contains at least one feasible solution i.e. whether a transformation is feasible. Equally important is
the ability to efficiently compute either the best feasible neighboring solution if the transformation is feasible and to
identify the reasons of the infeasibility otherwise. Therefore, this section goes beyond providing detailed descriptions of
the transformations and neighborhoods within each category. It also delves into efficiency considerations related to the
assessment of transformation feasibility and the computation of neighboring solutions.

Thus, this section starts with a preliminary subsection (Subsection 3.3.1) presenting the elementary transformations
as well as some technical notions. Subsequent subsections deal with more complex transformations, namely constant-size
(Subsection 3.3.2), polynomial-size (Subsection 3.3.3) and exponential-size (Subsection 3.3.4) transformations, that are
built upon these elementary transformations. Within each subsection, we also outline efficiency considerations.

17

3.3.1 Preliminaries
3.3.1.1 Elementary transformations

In this part, we introduce three elementary transformations, namely shifting, removing and inserting transformations,
which will be used in Subsections 3.3.2 and 3.3.3 to build interesting constant-size and polynomial-size transformations.
These elementary transformations are also depicted in Figure 3.2. While the top row of this figure recalls the example
solution represented in Figure 3.1 in Subsection 3.2.1 with a focus on Ellen’s and Fabian’s planning, the three following
rows show neighboring solutions obtained by applying one of these elementary transformations.

Elementary shifting transformation. Let i ∈ E be an employee. Let tf be the elementary shifting transformation. tf
consists in shifting start times of the schedule Ci of i, i.e. the neighborhood N (tf,S) comprises every solution S ′ obtained
from S by changing one or several start times in the schedule Ci.

For example, consider the solution S of the illustrative example represented in Figure 3.1. By shifting start times of
Fabian’s planning (R4, C4), a new planning (R′

4, C′
4) can be obtained such thatR′

4 = R4 = (d4, 13, 18, 21, 29, 4, 22, r4)
and C′

4 = (504, 506, 586, 678, 738, 820, 879, 1034).

Elementary removing transformation. Let i ∈ E be an employee and j ∈ T be a task performed by employee i in
S. Let tf be the elementary removing transformation. tf consists in removing j from the planning (Ri, Ci) of i, i.e. the
neighborhood N (tf,S) comprises every solution S ′ obtained from S by:

i) removing j and stj respectively from Ri and Ci so as to obtain a new route Ri′ and a new schedule C′
i;

ii) shifting or keeping unchanged the start times in C′
i;

iii) keeping unchanged the planning of every employee i′ ∈ E other than i.
For example, consider again the solution S of the illustrative example. By removing task 18 from Fabian’s plan-

ning (R4, C4), a new planning (R′
4, C′

4) can be obtained such that R′
4 = (d4, 13, 21, 29, 4, 22, r4) and C′

4 =
(540, 542, 678, 738, 820, 879, 1034).

Elementary inserting transformation. Let i ∈ E be an employee, j ∈ T be a task not performed by any employee
in S, and (k1, k2) ∈ A2

i be two activities performed consecutively by employee i. Let tf be the elementary insertion
transformation. tf consists in inserting j in the planning (Ri, Ci) of i, between activities k1 and k2, i.e. the neighborhood
N (tf,S) comprises every solution S ′ obtained from S by:

i) inserting j in Ri between k1 and k2 to obtain R′
i;

ii) inserting stj in Ci, between stk1 and stk2 to obtain C′
i and choosing new values for all the start times in C′

i;
iii) keeping unchanged the planning of every employee i′ ∈ E other than i.

For example, consider again the solution S of the illustrative example. By inserting task 15 in Ellen’s planning (R1, C1)
between task 26 and task 1, a new planning (R′

1, C′
1) can be obtained such that R′

1 = (d1, 7, 30, 3, 26, 15, 1, 17, 8, r1)
and C′

1 = (504, 525, 567, 662, 720, 816, 860, 907, 1009, 1080).
Before ending this part introducing the three elementary transformations, let us make some general comments about

the feasibility and the effect on the bi-objective function of these transformations. We recall that S a feasible solution of
a WSRP instance I.

• Transformation feasibility.
- Regarding the elementary removing transformation, consider the neighboring solution S ′ obtained by skipping

step ii). Since S is feasible and since steps i) and iii) do not make the solution violate skill, occurrence nor
time constraints, (M1.5) to (M1.11) in Model 1 (see Subsection 3.2.2), S ′ is also feasible. Therefore, there is
always at least one feasible neighboring solution i.e. the elementary removing transformation is always feasible.

- However, shifting arbitrarily the start times of activities in an employee schedule of S as it is done in a shifting
elementary transformation may provoke violation of time constraints, (M1.7) to (M1.11) in Model 1. Similarly,
inserting a task in an employee’s route as it is done in an inserting transformation at step i) may provoke violation
of skill constraints, (M1.5) in Model 1. Therefore, the elementary shifting and inserting transformations may
be feasible or not.

• Effect on the bi-objective function. Let tf be an elementary shifting, removing or inserting transformation and
suppose that there exists S ′ a feasible neighboring solution of N (tf,S).

- If tf is a shifting transformation, since the routes of S and S ′ are exactly the same, the total working and total
travel times of S equal the ones of S ′, i.e. twt(S ′) = twt(S) and trt(S ′) = trt(S), then S ′ is as good as S.

- If tf is a removing transformation, since all the tasks performed in S but task j are performed in S ′, the total
working time of S ′ is smaller than the one of S, i.e. twt(S ′) < twt(S), then S ′ is worst than S.

- If tf is a inserting transformation, since all the tasks performed in S plus task j are performed in S ′, the total
working time of S ′ is greater than the one of S, i.e. twt(S ′) > twt(S), then S ′ is better than S.

18

14.5 14.75 15.0 15.25 15.5 15.75 16.0 16.25

47.75

48.0

48.25

longitude

lat
itu

de

El

Fa
15

27

1

3 7

8

17

26

30

4

13

18

21
2229

El

Fa

7AM 9AM 11AM 1PM 3PM 5PM 7PM

hour

7 30 3 26 1 17 8

13 18 21 29 4 22

(a) Part of a solution

14.5 14.75 15.0 15.25 15.5 15.75 16.0 16.25

47.75

48.0

48.25

longitude

lat
itu

de

El

Fa
15

27

1

3 7

8

17

26

30

4

13

18

21
2229

El

Fa

7AM 9AM 11AM 1PM 3PM 5PM 7PM

hour

7 30 3 26 1 17 8

13 18 21 29 4 22

(b) After shifting start times in Fabian’s schedule

14.5 14.75 15.0 15.25 15.5 15.75 16.0 16.25

47.75

48.0

48.25

longitude

lat
itu

de

El

Fa
15

18

27

1

3 7

8

17

26

30

4

13

21 2229

El

Fa

7AM 9AM 11AM 1PM 3PM 5PM 7PM

hour

7 30 3 26 1 17 8

13 21 29 4 22

(c) After removing task 18 from Fabian’s planning

14.5 14.75 15.0 15.25 15.5 15.75 16.0 16.25

47.75

48.0

48.25

longitude

lat
itu

de

El

Fa

27

1

3 7

8

15 17

26

30

4

13

18

21
2229

El

Fa

7AM 9AM 11AM 1PM 3PM 5PM 7PM

hour

7 30 3 26 15 1 17 8

13 18 21 29 4 22

(d) After inserting task 15 in Ellen’s planning between task 26 and task 1

Figure 3.2: Neighboring solutions obtained by applying elementary transformations on a solution. The top row represents
a part of the solution S, presented in Figure 3.1, focusing on Ellen’s and Fabian’s plannings. Underneath, the second
to fourth rows represent neighboring solutions (with the same focus on Ellen’s and Fabian’s planning) obtained from S
respectively by applying shifting, removing and inserting elementary transformations.

19

3.3.1.2 Efficient assessment of elementary transformation feasibility

In this part, we focus on efficient ways to assess the feasibility of elementary transformations and to build feasible
neighborhood solutions. Let us first focus specifically on the case of the insertion elementary transformation. We will
make general comments about all the elementary transformations at the end of this part.

Using the notations involved in the definition of the elementary insertion transformation, suppose that one seeks to
insert task j in the planning (Ri, Ci) of employee i, between activity k1 and activity k2. A first approach for checking
whether this transformation is feasible is to actually insert j in (Ri, Ci) and then try to build a new feasible schedule C′

i

for employee i according to an earliest start time policy. We gradually set the start times of C′
i by following the order of

activities in Ri. Given an activity of Ri, we set its start time at the earliest possible time taking into account that i)
it cannot be earlier than the lower bound of the availability time window of this activity, and ii) a travel time is needed
between the end of the previous activity and the beginning of this activity. Such an approach is computed in linear time,
namely in O(p) with p the number of activities in Ri and more loosely in O(m) with m the number of tasks in T .

However, we can actually devise an approach running in constant time. Within the literature about Local Search (LS)
algorithms for solving the Vehicle Routing Problem with Time Windows (VRPTW), Savelsberg in [Sav92] introduces the
notion of Forward Time Slack (FTS) which allows the author to design a constant time computation for checking the
feasibility of an insertion. In the following paragraphs, we transpose the notion of FTS from the VRPTW to the WSRP
and also define its backward version, namely Backward Time Slack (BTS); we also define the notions of Backward Earliest
start Time (BET) and Forward Latest start Time (FLT). We will see then how BET and FLT can be used for checking
the feasibility of an elementary inserting transformation in constant time.

Backward and forward time slacks. Given a feasible planning (Ri, Ci) and a pair (j, stj) in Ri × Ci, the Backward
Time Slack (BTS), noted bj , and the Forward Time Slack (FTS), noted fj , are defined as the largest amounts of time
by which the starting time stj can be shifted respectively backward and forward without causing the planning (Ri, Ci)
to violate availability, working hours or sequencing constraints. The BTS of each activity in (Ri, Ci) can be computed
recursively, in a backward order, as follows:

- bdi = stdi − lbei,
- for (j, k) consecutive activities of Ri, bk = stk −max

(
lbak, stj − bj + dtj + trjk

)
;

and the FTS of each activity can be computed in a forward order, as follows:
- fri

= ubei − stri
,

- for (j, k) consecutive activities of Ri, fj = min
(
ubaj , stk + fk − trjk

)
− (stj + dtj);

with lbri
= lbei, ubdi

= ubei and dtdi
= 0.

The above formula computing the BTS bk, given a pair (j, k) of consecutive activities, is depicted in Figure 3.3.

time

k

b
(a)
k

stklbak

stj − bj+
dtj + trjk

(a) If current start time stk of activity k has to be changed for
an earlier time, then this change is limited by the lower bound
of its availability time window [lbak, ubak], so stk can not be
shifted by more than b

(a)
k .

time

jj kk

trjk

bj

dtj

b
(b)
k

stjstj − bj

stj − bj+
dtj + trjk

stk

(b) If current start time stk of activity k has to be changed for
an earlier time, then this change is limited by the performance of
the previous activity j which can not be shifted by more than bj ,
so stk can not be shifted by more than b

(b)
k .

Figure 3.3: Computation of a Backward Time Slack (BTS). The two figures represents the two limiting cases to consider
when computing the BTS bk of activity k.

As an example, we compute the BTS and FTS for all the performed activities in solution S represented in Figure 3.1.
BTS and FTS values are given in Table A.3 in Appendix A.3. We give below the values associated with Ellen’s planning
(R1, C1).

20

BTS: (bd1 = 5, b7 = 0, b30 = 3, b3 = 2, b26 = 0, b1 = 15, b17 = 28, b8 = 55, br1 = 55);
FTS: (fd1 = 76, f7 = 56, f30 = 53, f3 = 53, f26 = 48, f1 = 33, f17 = 20, f8 = 0, fr1 = 0).

From now on, we assume that a feasible solution S is systematically associated with corresponding BTS and FTS
values. Building upon the notions of BTS and FTS, we can define the ones of Backward Earliest start Time and Forward
Latest start Time.

Backward earliest start time and forward latest start time. Consider a feasible planning (Ri, Ci) of an employee
i, two consecutive activities (k1, k2) in Ri and a task j not in Ri such that employee i is skilled enough to perform it.
We define the notions of Backward Earliest start Time (BET) noted stb

j (resp. Forward Latest start Time (FLT) noted
stf

j) of j as follows. Suppose that one wants to insert j in Ri between k1 and k2. stb
j is the earliest time (resp. stf

j is
the latest time) at which i can start performing j such that the activities before k1 (resp. after k2) can be associated
with start times which satisfy time constraints (i.e. availability, working hours and sequencing constraints). stb

j and stf
j

are computed as follows:
stb

j = max(stk1− bk1 + dtk1 + trk1j , lbtj) and stf
j = min(stk2 + fk2 − trjk2 , ubtj)− dtj .

Using the BET and FLT, we can now propose a constant-time computation for checking whether an elementary insertion
transformation is feasible.

Constant-time feasibility check for the elementary inserting transformation. Following on the above-definition
of the BET and FLT, suppose that employee i is skilled enough to perform task j. If BTS and FTS of the planning (Ri, Ci)
are known, then checking the feasibility of inserting j between k1 and k2 in the planning of i can be computed in constant
time as follows: the insertion is feasible if and only if stb

j ≤ stf
j , given that the BET stb

j and FLT stf
j are computed on

constant time thanks to the above-formula.

Now that we have this constant-time computation for checking the feasibility of the elementary insertion transformation,
we provide below some general comments about computation efficiency related to all elementary transformations.

Efficiency considerations related to elementary transformations. We recall that S is a feasible solution of an
instance I, that m is the number tasks in T .

• Computing and maintaining consistent BTS and FTS in linear time. Given S, for each employee planning,
computing its corresponding BTS and FTS by applying the recursive formula involved in their definition corresponds
to a linear-time computation, in O(p) with p the number of activities in the employee planning, or more loosely in
O(m) with m the number tasks in T . Besides, suppose that one changes the start time of a single activity j from
stj to st′

j in an employee planning. Due to the recursive nature of the BTS and FTS, a linear-time computation is
also needed to update the BTS and FTS and maintain them consistent with the new employee planning.

• Checking transformation feasibility in constant time. While calculating BTS and FTS, as well as maintaining
their consistency, requires linear-time computations, the positive counterpart is that checking the feasibility of an
elementary transformation can be performed in constant time.

- Checking whether an insertion transformation is feasible can be performed in constant time thanks to the above
check comparing the BET and FLT.

- Since the removing transformation is always feasible, as mentioned earlier, no feasibility check is needed. In
other words, this corresponds to a constant-time computation.

- Regarding the shifting transformation, suppose that one wants to change the start time of a single activity j
from stj to st′

j . Checking whether this transformation is feasible can be performed by comparing the difference
of start time st′

j − stj with the values of BTS bj and FTS fj : if st′
j > stj and st′

j − stj < fj or if stj > st′
j

and stj − st′
j < bj , then the transformation is feasible. This corresponds to a constant-time computation.

• Building a neighboring solution in linear time. Suppose that one wants to build a neighboring solution by
applying an elementary transformation whose feasibility has already been checked and confirmed. Regardless of the
transformation, at the end of the neighboring solution construction, BTS and FTS must be kept consistent with the
new planning which requires to apply the recursive formula. This causes the construction of a neighboring solution
related to any of the three elementary transformations to be computed in linear time, O(p) with p the number of
activities in the considered employee planning, or more loosely in O(m) with m the number of tasks in T .

21

3.3.1.3 Additional notions related to elementary inserting transformations

Before ending this preliminary subsection, we propose to introduce two additional notions related to the elementary
insertion: the feasibility gap as well as the backward and forward critical activities. These notions will be especially exploited
in Chapter 5 in order to compute explanations and to justify in explanation texts why solutions are infeasible.

In a previous paragraph, we saw that the mathematical difference between the BET and the FLT informs us about the
feasibility of an elementary insertion. We propose to give a name to the positive part of this difference: the feasibility gap.

Feasibility gap related to an elementary insertion transformation. Consider a feasible planning (Ri, Ci) of an
employee i, two consecutive activities (k1, k2) in Ri and a task j not in Ri such that employee i is skilled-enough to
perform it. We call feasibility gap the quantity max(stb

j−stf
j , 0). This quantity indicates whether the elementary insertion

j between k1 and k2 in the planning of i is feasible, and if not it the measures the amount of time constraint violation:
- if max(stb

j − stf
j , 0) = 0, i.e. stb

j ≤ stf
j , then the insertion is feasible;

- if max(stb
j − stf

j , 0) > 0, i.e. stb
j > stf

j , then the insertion is infeasible, and activities k1 and k2 would need to be
started respectively earlier and later by a total amount of stb

j − stf
j to make the insertion feasible.

One of the main interests of the feasibility gap is that it allows us to i) quantify the infeasibility of a neighboring
solution obtained after an insertion and ii) to compare the infeasibilities of two neighboring solutions obtained after
different insertions. Indeed, suppose that we build two different neighboring solutions, each one obtained by applying a
single insertion to the same original solution. If both neighboring solutions are infeasible, i.e. their corresponding feasibility
gap is positive, then we can view the neighboring solution with the smallest feasibility gap as the “least infeasible” solution
out of these two solutions.

The feasibility gap will be particularly useful in Chapter 5 where we will often look for the least infeasible solution in a
given neighborhood.

In the case where the elementary insertion of a given task in a planning is infeasible, it may be interested to identify
which activities of the planning prevent this insertion to be feasible. Suppose that one wants to apply to a solution the
elementary insertion of task j in an employee planning between activity k1 and activity k2. With the aim of making this
insertion feasible, one may i) shift backward, as much as possible, all the activities of the planning performed before k1
(included), ii) shift forward, as much as possible, all the activities performed after k2 (included), and iii) try to fit task j
in the temporal space created between k1 and k2. In case this insertion is infeasible, it may be useful to identify which
activities in the planning, before k1 (included) and after k2 (included), prevent the temporal space created between k1
and k2 to be large enough to feasibly fit task j. We refer to these activities as backward and forward critical activities.

Backward and forward critical activities. Following on the above-definition of the feasibility gap, suppose that the
insertion task j in the planning of employee i between k1 and k2 is infeasible, i.e. stb

j > stf
j . We define the backward

critical activity (resp. forward critical activity) as the first activity, in a descending order (resp. ascending order), starting
from j then k1 and previous activities (resp. starting from j then k2 and all following activities), whose lower bound (resp.
upper bound) of availability time-window prevents it, and all the tasks between it and j, to be feasibly performed earlier
(resp. later). The backward critical activity can be computed as follows:

- if stb
j = lbj , then it is j;

- else, starting from k1 and following a descending order in Ri, it is the first activity k such that stk − bk = lbak;
and the forward critical activity as follows:

- if stf
j + dtj = ubj , then it is j;

- else, starting from k2 and following an ascending order in Ri, it is the first activity k such that stk +fk +dtj = ubak.
The notion of backward critical activity is illustrated in Figure 3.4. With the intention of feasibly inserting task 27 in

Ellen’s planning between tasks 17 and 8, activities before task 17 (included) are shifted backward as much as possible. Still,
task 26 cannot be shifted further backward due to the lower bound lbt26 of its availability time window, represented with
the left red square bracket. Since the sequence of activities from task 26 to task 27 is interrupted, the end time of task 27,
drawn as a dashed vertical line, cannot occur earlier. However, the upper bound ubt27 of its availability time window
is much earlier, as shown with the second red bracket. In other words, in order to satisfy its corresponding availability
constraints, task 27 would need to be performed earlier, as symbolized with the pair of dashed arrows. In this situation,
task 26 is the backward critical activity.

To conclude on this preliminary subsection, we detailed three elementary transformations, namely shifting, removing
and insertion transformations. We also delved into efficiency considerations about assessing their feasibility and computing
neighboring solutions. In the upcoming subsections, we continue this effort with more complex transformations, starting
with constant-size transformations.

22

14.5 14.75 15.0 15.25 15.5 15.75 16.0 16.25

47.75

48.0

48.25

longitude

lat
itu

de

El

Fa
15 1

3 7

8

17

26

27

30

4

13

18

21
2229

El

Fa

7AM 9AM 11AM 1PM 3PM 5PM 7PM

hour

7 30 3 26 1 17 27 ...

lbt26 ubt27

13 18 21 29 4 22

Figure 3.4: Backward critical activity, task 26, preventing task 27 to be performed earlier when inserted task 27 in Ellen’s
planning between activities 17 and 8.

3.3.2 Constant-size transformations

We recall that a solution transformation tf is said constant-size if all the neighboring solutions of N (tf,S) are route-
equal to each other. As mentioned earlier, elementary transformations presented in the previous subsection are actually
constant-size, but we isolated them and referred to them as elementary to exploit them in order to define “practical”
transformations for future Chapters 4 and 5. In this subsection, we actually define three new constant-size transformations,
by combining elementary transformations, namely, reassignment, exchange and reordering constant-size transformations.
In the paragraphs below, we detail these transformations, before making some general comments about them. Figure 3.5
shows routes of neighboring solutions obtained by applying examples of each of these constant-size transformations to the
same original solution.

Reassigning a task from an employee planning to another. Let (i, i′) ∈ E2 be two different employees, j ∈ T
be a task performed by employee i′ in S, and (k1, k2) ∈ A2

i be two activities performed consecutively by employee i. Let
tf be the constant-size reassignment transformation. tf consists in reassigning j from the planning (Ri′ , Ci′) of i′ to the
planning (Ri, Ci) of i, between activities k1 and k2. Then, N (tf,S) is made of every solution S ′ obtained from S by:

i) applying the elementary transformation of removing j from (Ri′ , Ci′) (without shifting start times in schedules);
ii) applying the elementary transformation of inserting j in (Ri, Ci) between k1 and k2.

Exchanging a task with another one in an employee planning. Let i ∈ E be an employee, j ∈ T be a task not
performed by any employee in S and j′ ∈ T be a task performed by employee i. Let (k1, k2) ∈ A2

i be the two activities
performed by employee i respectively before and after j′. Let tf be the constant-size exchange transformation. tf consists
in exchanging j′ with j in the planning (Ri, Ci) of i. Then, N (tf,S) is made of every solution S ′ obtained from S by:

i) applying the elementary transformation of removing j′ from (Ri, Ci) (without shifting start times in schedules);
ii) applying the elementary transformation of inserting j in (Ri, Ci) between k1 and k2.

Reordering a task in an employee planning. Let i ∈ E be an employee, j ∈ T be a task performed by employee i in
S and (k1, k2) ∈ A2

i be two activities, different from j, performed consecutively by employee i. Let tf be the constant-size
reordering transformation. tf consists in reordering j in the planning (Ri, Ci) of i, by moving it between (k1, k2). Then,
N (tf,S) is made of every solution S ′ obtained from S by:

i) applying the elementary transformation of removing j from (Ri, Ci) (without shifting start times in schedules);
ii) applying the elementary transformation of inserting it back between k1 and k2.

Let us make a few comments about these constant-size transformations. Let tf be a reassignment, exchange or
reordering constant-size transformation.

• Checking transformation feasibility in constant or linear time.
- If tf is a reassignment transformation, since removing a task (without shifting start times), as it is done in step

i), preserves the feasibility and since the planning from which task j is removed (planning of employee i′) is
different from the one in which the task is inserted (planning of employee i), we can simply check the feasibility
of the insertion of j in the planning of i (without removing j from the planning of i′). Therefore, the feasibility
of tf can be checked in constant time by using the constant-time feasibility check of elementary insertion.

23

14.5 14.75 15.0 15.25 15.5 15.75 16.0 16.25

47.75

48.0

48.25

longitude

lat
itu

de

El

Fa
15

27

1

3 7

8

17

26

30

4

13

18

21
2229

El

Fa

7AM 9AM 11AM 1PM 3PM 5PM 7PM

hour

7 30 3 26 1 17 8

13 18 21 29 4 22

(a) Part of a solution

14.5 14.75 15.0 15.25 15.5 15.75 16.0 16.25

47.75

48.0

48.25

longitude

lat
itu

de

El

Fa
15

27

1

3

4

7

8

17

26

30

13

18

21
2229

El

Fa

7AM 9AM 11AM 1PM 3PM 5PM 7PM

hour

7 30 3 26 4 1 17 8

13 18 21 29 22

(b) After reassigning task 4 to Ellen between task 26 and task 1

14.5 14.75 15.0 15.25 15.5 15.75 16.0 16.25

47.75

48.0

48.25

longitude

lat
itu

de

El

Fa 1

27

3 7

8

15 17

26

30

4

13

18

21
2229

El

Fa

7AM 9AM 11AM 1PM 3PM 5PM 7PM

hour

7 30 3 26 15 17 8

13 18 21 29 4 22

(c) After exchanging task 1 with task 15 in Ellen’s planning

14.5 14.75 15.0 15.25 15.5 15.75 16.0 16.25

47.75

48.0

48.25

longitude

lat
itu

de

El

Fa
15

27

1

3 7

8

17

26

30

4

13

18

21
2229

El

Fa

7AM 9AM 11AM 1PM 3PM 5PM 7PM

hour

7 30 3 26 1 17 8

13 18 21 29 22 4

(d) After reordering task 4 in Fabian’s planning to be performed after task 22

Figure 3.5: Neighboring solutions obtained by applying constant-size transformations on a solution. In the top row is
represented a part of the solution S, presented in Figure 3.1, focusing on Ellen’s and Fabian’s plannings. Underneath, the
second to fourth rows represent neighboring solutions (with the same focus on Ellen’s and Fabian’s plannings) obtained
from S respectively by applying reassigning, exchanging and reordering constant-size transformations.

24

- If tf is an exchange transformation, we can actually check whether replacing task j′ by task j is feasible without
having to remove task j′ from the planning of employee i, which computation would be linear in O(m). Indeed,
let k1 and k2 be the activities respectively before and after j′ in the planning of i. The BTS bk1 and FTS fk2

of k1 and k2 remain the same whether j′ is in the planning of i or removed from it. Therefore, we can use bk1

and fk2 to compute the BET stb
j and FLT stf

j related to the insertion of j between k1 and k2 in the planning of
i without removing j′. Then, the feasibility of tf can be checked in constant time by using the constant-time
feasibility check of elementary insertion using BET stb

j and FLT stf
j

- If tf is a reordering transformation, we must first remove task j from the planning of employee i, which is
performed in linear time O(m) (where m is the number of tasks in T), and then check the feasibility of
inserting j back in the same planning, which can be performed in constant time. Therefore, the feasibility of
tf can be checked in linear time in O(m).

• Building a neighboring solution - in linear time. Whether tf is a reassignment, exchange or reordering constant-
size transformation, tf consists in i) in removing a task and ii) inserting a task. Both transformations can be
computed in linear time in O(m). Therefore building a given neighboring solution can be performed in linear time
in O(m).

• Building a neighboring solution - consistent insertion. Let us emphasize that building a neighboring solution
implies applying a single elementary insertion. This consistent presence of a single insertion as part of process of
building a neighboring solution will play an important role in the computation of explanation in Chapter 5.

In this subsection, we detailed three new constant-size transformations, namely reassignment, exchange and reordering
transformations. Along with the elementary insertion transformation, which is also constant-size, they form the four
“practical” constant-size transformations which will be exploited in our methods for modeling and generating explanations.
In the next subsection, we propose to extend these four transformations into polynomial-size transformations.

3.3.3 Polynomial-size transformations
We recall that a solution transformation tf is said polynomial-size if the number of subsets of N (tf,S) containing

solutions that are all route-equal to each other is polynomial (non-constant) in n, number of employees in E , and m,
number of tasks in T . Below, we outline how each of the four constant-size transformations - insertion, reassignment,
exchange and reordering - can be extended in polynomial-size transformations.

Practical polynomial-size transformations. There are various ways to define a polynomial-size transformation from
each of the four constant-size transformations: insertion, reassignment, exchange and reordering transformations. For each
of these transformations, we propose below several practical polynomial-size extensions. Differences between the original
constant-size transformation and its polynomial-size counterparts are emphasized in italics.

• Insertion:
a. inserting a given non-performed task between any pair of consecutive activities of a given employee planning;
b. inserting any non-performed task between any pair of consecutive activities of a given employee planning;
c. inserting a given non-performed task between any pair of consecutive activities of any employee planning.

Figure 3.6 shows the routes of some neighboring solutions obtained by applying a polynomial-size insertion transfor-
mation (extension a.) to the same original solution.

• Reassignment:
a. reassigning a given task, performed by an employee, between any pair of consecutive activities in the planning

of a given other employee;
b. reassigning a given task, performed by an employee, between any pair of consecutive activities in the planning

of any other employee.
• Exchange:

a. exchanging any task performed by a given employee with a given non-performed task;
b. exchanging any task performed by a given employee with any non-performed task;
c. exchanging any task performed by any employee with a given non-performed task.

• Reordering:
a. reordering a given task of a given employee planing by moving it between any pair of consecutive activities

performed before this task in the planning;
b. reordering a given task of a given employee planing by moving it between any pair of consecutive activities

performed after this task in the planning;
c. reordering a given task of a given employee planing by moving it between any pair of consecutive activities of

the planning.

25

14.5 14.75 15.0 15.25 15.5 15.75 16.0 16.25

47.75

48.0

48.25

longitude

lat
itu

de

El

Fa
27

1

3 7

8

15 17

26

30

4

13

18

21

22

29

14.5 14.75 15.0 15.25 15.5 15.75 16.0 16.25

47.75

48.0

48.25

longitude

lat
itu

de

El

Fa

27

1

3 7

8

15 17

26

30

4

13

18

21

22

29

14.5 14.75 15.0 15.25 15.5 15.75 16.0 16.25

47.75

48.0

48.25

longitude

lat
itu

de

El

Fa

27

1

3 7

8

15 17

26

30

4

13

18

21

22
29

14.5 14.75 15.0 15.25 15.5 15.75 16.0 16.25

47.75

48.0

48.25

longitude

lat
itu

de

El

Fa

27

1

3 7

8

15 17

26

30

4

13

18

21

2229

14.5 14.75 15.0 15.25 15.5 15.75 16.0 16.25

47.75

48.0

48.25

longitude

lat
itu

de

El

Fa

27

1

3 7

8

15 17

26

30

4

13

18

21

22
29

14.5 14.75 15.0 15.25 15.5 15.75 16.0 16.25

47.75

48.0

48.25

longitude

lat
itu

de

El

Fa

27

1

3 7

8

15 17

26

30

4

13

18

21

22
29

14.5 14.75 15.0 15.25 15.5 15.75 16.0 16.25

47.75

48.0

48.25

longitude

lat
itu

de

El

Fa
27

1

3 7

8

15 17

26

30

4

13

18

21

22
29

14.5 14.75 15.0 15.25 15.5 15.75 16.0 16.25

47.75

48.0

48.25

longitude

lat
itu

de

El

Fa
27

1

3 7

8

15 17

26

30

4

13

18

21

22
29

Figure 3.6: Neighboring solutions obtained by applying a polynomial-size insertion on a solution. Consider S the solution
represented in Figure 3.1 and focus on Ellen’s and Fabian’s plannings. The figures represent the routes of neighboring
solutions obtained from S by applying a polynomial-size insertion: inserting task (15) between every pair of consecutive
activities in Ellen’s planning.

26

A few comments similar to those made for constant-size transformations can be made about these polynomial-size
transformations.

• Checking transformation feasibility in polynomial time. Mathematically, the neighborhood associated with a
polynomial-size transformation can be seen as the union of the neighborhoods associated with the corresponding
constant-size transformation applied over a linear set of activities or employees (e.g. the neighborhood associated
with the polynomial-size insertion transformation “a”, which implies inserting a task in an employee planning, can be
obtained as the union of the neighborhoods associated with the constant-size insertion transformation applied over
the set of pairs of consecutive activities of this employee planning, which is linear in m number of tasks). Building
upon that mathematical union, for every polynomial-size transformation, we can devise a polynomial-time feasibility
check, in m number of tasks, and n, number of employees. For a given polynomial-size transformation, we repeat
the feasibility check of the corresponding constant-size transformation over the linear set of activities or employees.
If any of these check is feasible, then the polynomial-size transformation is feasible.

• Building a neighboring solution - in linear time. While the feasibility checks of polynomial-size transformations
require more computations than the ones of constant-size transformations, the process for building a given neighboring
solution remains unchanged. Building a neighboring solution can then be performed in linear time in O(m).

• Building a neighboring solution - consistent insertion. There is again a consistent presence of a single insertion
as part of process of building a neighboring solution related to a polynomial-size transformation.

In this subsection, we presented various polynomial-size transformations that can be seen as applying constant-size
transformations over sets employees or tasks instead of a unique employee or a unique task. Checking whether such a
polynomial-size transformation is feasible implies higher algorithmic complexity computations than in the case of constant-
size transformations. However, these computations remained polynomial in n, number of employees, and m, number of
tasks. In the next subsection, we study exponential-size transformations for which the equivalent computations are no
longer polynomial.

3.3.4 Exponential-size transformations

We recall that a solution transformation tf is said exponential-size if the number of subsets of N (tf,S) containing
solutions that are all route-equal to each other is exponential in n, number of employees in E , and m, number of tasks in T .
Below, we outline how each of the four constant-size transformations - insertion, reassignment, exchange and reordering
transformations - can be extended into an exponential-size transformation.

Practical exponential-size transformations. Given a constant-size transformation, among the insertion, reassign-
ment, exchange and reordering ones, we propose to extend it into an exponential-size transformation tf as follows. N (tf,S)
is made of every solution S ′ obtained from S by:

i) applying the constant-size transformation on S - as part of this transformation, an elementary task insertion is
applied on the planning of an employee i ∈ E ;

ii) permuting the tasks (except the departure and return activities) in the route of i and setting values of start times
for the schedule of i.

Unlike the definitions of constant-size and polynomial-size transformations, this definition is more theoretical than practical:
the two steps above do not correspond to the way we will build neighboring solutions in practice, as described below.

We make a few comments about these exponential-size transformations.
• Checking transformation feasibility using ILP solving. By definition, the neighborhood associated with an

exponential-size transformation can be obtained by considering all the permutations of the tasks involved in an
employee planning - and setting corresponding schedules. Mathematically, it corresponds to a union of route-equal
solution groups where the size of the union is the number of permutations of a set of tasks. Contrary to the
polynomial-size transformation case, we cannot build upon this mathematical union to devise a feasibility check for
exponential-size transformations as iterating over a set of permutations is usually computationally intractable. We
propose instead to resort to ILP modeling and solving in order to implicitly explore the set of neighboring solutions
with the aim of determining whether the transformation is feasible. This will be detailed in Chapter 5.

• Building a neighboring solution - using ILP solving. The same ILP-based algorithm used to check the feasibility
of an exponential-size transformation will be used to build a neighboring solution.

27

• Building a neighboring solution - consistent insertion. Let us emphasize again that building a neighboring
solution implies applying a single elementary insertion. Admittedly, this insertion is then combined with a permutation
which is also critical and may cause the infeasibility of the solution. However, in practice the insertion and the
permutation involved in the exponential-size transformation will be handled simultaneously through ILP solving as
it will be detailed in Chapter 5. Thus, we can again conclude the consistent presence of a single insertion as part of
process of building a neighboring solution.

To conclude, in this subsection, we outlined various exponential-size transformations that can be seen as the application
of a constant-size transformation followed by a permutation of the activities of the modified employee planning. Since LS
solving algorithms rely on repeating various solution transformations in order to optimize gradually the solution, they do not
usually involve such exponential-size transformations whose feasibility check and neighboring solution construction require
too much computation time. On the contrary, such transformations can be envisaged within our explanation methods, as
they will never be involved more than once in the calculation of an explanation. Chapters 4 and 5 will make the use of all
these transformations and neighborhoods in our explanatory methods more tangible for the reader.

3.4 Conclusion
In this chapter, we first delineated the characteristics of the WSRP use case, for which we aimed at developing

techniques to explain its solutions. Especially, we modeled this use case as a bi-objective ILP problem that we called main
model.

Then, we gave a comprehensive presentation of solution transformations and neighborhoods, as these will play a
crucial role in our endeavor to model, compute and generate explanations, described in the following chapters. We
classified transformations into three categories depending on the structure of their corresponding neighborhoods, namely
constant-size, polynomial-size and exponential-size transformations. We listed various families of solution transformations
including transformations about inserting a task in an employee planning, reassigning a task from an employee planning
to another, exchanging a task in an employee planning with another task or reordering tasks within an employee planning.
We also introduced various notions that will be used in the following chapters, including the route-equality of solutions,
the Backward Earliest start Time, the Forward Latest start Time and the feasibility gap associated with an insertion as
well as the critical activities when such an insertion is infeasible.

To facilitate future reference, Table 3.1 sums up all the practical transformations introduced in this chapter. Each row
corresponds to a specific transformation. It provides a description of this transformation as well as its category. It recalls
the computational complexities associated with checking the feasibility of the transformation and building a neighboring
solution. It also recalls the main operations to apply for building a neighboring solution, emphasizing the consistent
presence of a task insertion in an employee planning among these operations. To identify each transformation listed in
this table, we introduce labels. The label of a transformation is a tuple “(X,Y,Z)” such that:

- “X” describes the family of the considered solution transformation; it may be equal to “Ins”, “Ass”, “Ex” or “Ord”
which are short-names standing respectively for “insertion”, “reassignment”, “exchange” and “reordering”.

- “Y” gives the category of solution transformation defined by the structure of the corresponding neighborhood; it is
either “C”, “P” or “E” which stand for “constant-size”, “polynomial-size“ and “exponential-size”.

- “Z” is a letter (e.g. “a”, “b” or “c”) referring to a variant of the transformation of family “X” and category “Y”; if
“X” & “Y” defines a unique transformation, then there is no letter for “Z” and the label is simply “(X, Y)”.

Given the central role of transformations in our explanation approach, other tables in subsequent chapters, such as the list
of observations Table 4.1 or the list of questions Table 4.2, will relate to Table 3.1.

28

Label Description of the transformation Category Feasibility Building a neigh. solution

(Ins,C) Inserting a given non-performed task between a given pair
of consecutive activities in a given employee planning

Constant
-size O(1) Elementary insertion O(m)

(Ins,P,a) Inserting a given non-performed task between any pair of
consecutive activities in a given employee planning

Polynomial
-size O(m) Elementary insertion O(m)

(Ins,P,b) Inserting any non-performed task between any pair of con-
secutive activities in a given employee planning

Polynomial
-size O(m2) Elementary insertion O(m)

(Ins,P,c) Inserting a given non-performed task between any pair of
consecutive activities in any employee planning

Polynomial
-size O(nm) Elementary insertion O(m)

(Ins,E) Inserting any non-performed task in a given employee plan-
ning while permuting the order of the tasks in this planning

Exponential
-size ILP-based Insertion w. permutation ILP-based

(Ass,C)
Reassigning a given task performed by an employee be-
tween a given pair of consecutive activities in the planning
of a given other employee

Constant
-size O(1) Elementary removal,

elementary insertion O(m)

(Ass,P,a)
Reassigning a given task performed by an employee be-
tween any pair of consecutive activities in the planning of
a given other employee

Polynomial
-size O(m) Elementary removal,

elementary insertion O(m)

(Ass,P,b)
Reassigning a given task performed by an employee be-
tween any pair of consecutive activities in the planning of
any other employee

Polynomial
-size O(nm) Elementary removal,

elementary insertion O(m)

(Ass,E)
Reassigning a given task performed by an employee in the
planning of a given other employee while permuting the
order of the tasks in this planning

Exponential
-size ILP-based Elementary removal,

insertion w. permutation ILP-based

(Ex,C) Exchanging a given task performed by a given employee
with a given non-performed task

Constant
-size O(1) Elementary removal,

elementary insertion O(m)

(Ex,P,a) Exchanging any task performed by a given employee with
a given non-performed task

Polynomial
-size O(m) Elementary removal,

elementary insertion O(m)

(Ex,P,b) Exchanging any task performed by a given employee with
any non-performed task

Polynomial
-size O(m2) Elementary removal,

elementary insertion O(m)

(Ex,P,c) Exchanging any task performed by any employee with a
given non-performed task

Polynomial
-size O(nm) Elementary removal,

elementary insertion O(m)

(Ex,E)
Exchanging any task performed by a given employee with
a given non-performed task while permuting the order of
the tasks

Exponential
-size ILP-based Elementary removal,

insertion w. permutation ILP-based

(Ord,C,a)
Reordering a given task in a given employee planning by
moving the task between a given pair of consecutive activ-
ities performed after it

Constant
-size O(m) Elementary removal,

elementary insertion O(m)

(Ord,C,b)
Reordering a given task in a given employee planning by
moving the task between a given pair of consecutive activ-
ities performed before it

Constant
-size O(m) Elementary removal,

elementary insertion O(m)

(Ord,P,a)
Reordering a given task in a given employee planning by
moving the task between any pair of consecutive activities
performed after it

Polynomial
-size O(m) Elementary removal,

elementary insertion O(m)

(Ord,P,b)
Reordering a given task in a given employee planning by
moving the task between any pair of consecutive activities
performed before it

Polynomial
-size O(m) Elementary removal,

elementary insertion O(m)

(Ord,P,c) Reordering a given task in a given employee planning by
moving the task between any pair of consecutive activities

Polynomial
-size O(m) Elementary removal,

elementary insertion O(m)

(Ord,E) Reordering the tasks of a given employee planning Exponential
-size ILP-based Elementary removal,

insertion w. permutation ILP-based

Table 3.1: List of transformations. Each transformation is characterized by a label and a description. We write in
italics some words in the description to emphasize the differences between the transformations about the same topics.
The category (constant-size, polynomial-size or exponential-size) of the transformation is given. For constant-size and
polynomial-size transformations, we also provide the algorithmic complexity of assessing the feasibility of the transformation
as well as the one of building any neighboring solution. We recall that m is the number of tasks and n the number of
employees in the instance.

29

30

Chapter 4 New framework for modeling explanations
4.1 Introduction

In Chapter 3, we specified the Combinatorial Optimization (CO) problem we focus on in this thesis: we defined
a use case of the Workforce Scheduling and Routing Problem (WSRP) (see Subsection 3.2.1) and formulated it as a
bi-objective Integer Linear Program (ILP) model, which we called main model (see Model 1 in Subsection 3.2.2). We
also described various transformations that can be applied on a solution in order to build new ones, including insertion,
reassignment, exchange and reordering transformations. We called neighborhood the set of solutions produced by such a
transformation, and we organized transformations in categories, namely constant-size, polynomial-size and exponential-size
transformations, depending on the structure of their neighborhoods (see Section 3.3).

In this chapter, we present our framework modeling the explanation of WSRP solutions, which exploits the ILP
formulation of our WSRP use case as well as the solution transformations. Throughout this chapter, we consider that
end-users have S, a feasible solution of an instance I, that they have typically obtained thanks to a WSRP-solving system.
In order to illustrate the content developed in this chapter, let us bring back the example introduced in Chapter 1 presenting
a typical situation where end-users wonder about an intriguing fact in their solution. Figure 4.1 below recalls Figure 1.1
representing this situation.

14.5 14.75 15.0 15.25 15.5 15.75 16.0 16.25

47.25

47.5

47.75

48.0

48.25

48.5

longitude

lat
itu

de

El

Al

Ad

Fa

Ca

12

15

27

31

1

3 7

8

17

26

30
6

14

16

19
20

25

28

910

11

24

4

13

18

21
2229

25

23

El

Al

Ad

Fa

Ca

7AM 9AM 11AM 1PM 3PM 5PM 7PM

hour

7 30 3 26 1 17 8

28 16 25 14 20 6 19

11 9 10 24

13 18 21 29 4 22

5 23 2

Figure 4.1: Intriguing observation about the WSRP solution represented in Figure 3.1: “Ellen is not performing task 27
in addition to the activities of her planning” (highlighted by the orange ellipse). Recall of Figure 1.1.

Figure 4.1, in the graph of routes on the left, an orange ellipse highlights an observation that end-users could make
about the solution and that may be intriguing for them: despite the positioning of task 27, which is on the route of Ellen
between task 17 and task 8, “Ellen is not performing task 27 in addition to the activities of her planning”.

Then, a natural question that end-users could ask regarding this observation is “Why is Ellen not performing task 27 in
addition to the activities of her planning?”. To answer it, we can rely on a specific kind of explanation, named a contrastive
explanation, where the aim is to clarify why one fact occurred in contrast to another (see Sections 2.2 and 2.3).

Actually, noticing that Ellen’s schedule is quite full and almost uninterrupted, end-users may anticipate that it is
impossible to add task 27, a 50-minute long task, to Ellen’s planning, so they could ask instead “Ellen is not performing
task 27 in addition to the activities of her planning, but what if task 27 lasts 40 minutes instead of 50 minutes?”. Such a
question is answered by a scenario explanation, that is to say by describing how changes in the input, i.e. in the instance
parameters such as the duration of task 27, affect a fact occurring in the output, i.e. the solution (see Section 2.3).

Alternatively, instead of understanding why Ellen does not perform task 27 or checking if suggested alterations of
the instance parameters help making Ellen perform the task, end-users could wish to force task 27 to be included in
her activities and raise the question: “How to make Ellen perform task 27 in addition to the activities of her planning,
considering that the availability time windows of each task in Ellen’s planning may be widen by at most 10 minutes?”.
In this case, the answer is a counterfactual explanation, which aims to identify which parameters could be changed in
the instance to obtain a feasible solution featuring a user-defined alternative fact, namely here a solution such that Ellen
performs task 27 in addition to the tasks of her planning (see Section 2.3).

31

This example illustrates the types of questions end-users could ask about a given observation regarding a solution, to
understand this observation, or to move towards a desired, non-obtained and possibly unobtainable solution. The type of
question asked (“Why not?”, “What if?” or “How to”) conditions the type of explanation we give (contrastive, scenario
and counterfactual). Regardless of the type, it should be stressed that the production of explanations is triggered by
questions raised by end-users wondering about the relevance of facts observed in their solution.

Thus, we propose in this chapter an original framework for modeling explanations about solutions of WSRP instances.
This framework consists in a process starting from an end-user observation about a solution and ending with an explanation
text about this observation. Figure 4.2 depicts this process and details it into various steps.

The top part of this figure represents the steps related to end-users: from an end-user perspective, our framework
consists in (A) making an observation o about S, feasible solution of instance I, (B) asking a question q based on
this observation o, and (F) obtaining an explanation as a text ux(q). Step (B), associated with step (A), allows end-
users to raise questions about various topics (related to solution transformation introduced in Section 3.3) and to obtain
explanations of different types (contrastive, scenario and counterfactual).

The bottom part of the figure, which corresponds to the causality diagnosis process (see Section 2.2), is divided
into several consecutive mathematical steps (C), (D) and (E) leading from q to ux(q). Steps (C) and (D) consist in
translating q, which is expressed in common language, into mathematical terms. To do so, step (C) makes use of the
notion of neighborhood N (o,S) that we introduced in Section 3.3, in order to redefine q into another question dpq(q)
using mathematical terms related to decision problems. Remark that the neighborhood, noted N (o,S), here depends on
an observation o instead of a transformation tf . As we will see it in Subsection 4.2.1, observations are assumed to be
related to transformations, that is why we allow ourselves this slight abuse of the neighborhood notation. Then, step (D)
introduces an ILP model, referred to as foil model, denoted fm(.) and relying on the structure of the main model mm(.),
with the purpose of rephrasing fmq(q) with terms related to ILP. Finally, step (E) uses feasibility information about fm(.)
to produce a mathematical explanation x(q).

To the best of our knowledge, this is the first time that, in a CO context, an explanation framework addresses a large
range of topics to explain, handles various types of explanations, provides a mathematical-programming interpretation
of questions and explanations, and harnesses the concept of neighborhood to play a central role in the modeling of the
causality diagnosis process. This framework was initially introduced in [LGMO22] but it focused exclusively on contrastive
explanations.

• •

•

•

End-user related steps

Mathematical steps of the causality diagnosis

End-user observation o about S,
feasible solution of instance I,
defined from a list of templates

(cf. Subsection 4.2.1)

(A)

End-user question q, related to o,
based on one of the three types:

contrastive, scenario or counterfactual
(cf. Subsection 4.2.2)

(B)

Decision-problem interpreted question
dpq(q) relying on neighborhood N (o, S)

and decision problems dp(o, S, .)
(cf. Subsection 4.3.1)

(C)

Foil-model interpreted question fmq(q)
relying on foil models fm(o, S, .) which are based on

main model mm(.) with additional constraints
including neighborhood constraints relying on N (o, S)

(cf. Subsection 4.3.2)

(D)

Explanation x(q)
based on mathematical statements
about the feasibility of fm(o, S, .)

(cf. Subsection 4.3.3)

(E)

Explanation text ux(q)
narrating x(q) to end-users

(cf. Chapter 5)
(F)

Figure 4.2: Overview of our framework modeling the explanation process, from observations to explanations.

The remainder of this chapter is organized as follows. Section 4.2 deals with end-user related steps (A) and (B). We
specify the nature of the end-user observations handled by our framework and describe how questions can be formulated
based on these observations. Section 4.3 delves into the causality diagnosis steps from (C) to (E). We present how questions
expressed in common language can be interpreted into mathematical terms. This section introduces key concepts such
as the one of foil model and ends with a formal definition of explanations. The generation of explanation texts, which
correspond to step (F), will be developed in Chapter 5.

32

4.2 End-user related steps - From observations to questions

4.2.1 End-user observations about a solution
For various reasons, e.g. getting a better understanding of their solution S, end-users may want explanations about S.

Specifically, they may want explanations about facts observed in S. In this subsection focusing on step (A) of Figure 4.2, we
specify what contents we seek to explain with our approach. Especially, we introduce the notion of transformation-related
observations, in short observations, which are the starting point of the explanation process in our framework.

Contents to explain: transformation-related observations about solutions. We detail hereafter some assumptions
regarding the contents to explain to end-users in our approach.

• Scope of explanations. As mentioned in Section 2.3, explanations may have a local or global scope. In our approach,
we choose to deal with local explanations, more precisely, explanations about solutions of WSRP instances.

• Focus on observations. Rather than to explain a solution S as a whole (focusing e.g. on its quality), we seek
to explain facts observed in S, i.e. observations (e.g. the observation that a given task is not performed by any
employee in S). Doing so allows us to draw the attention of end-users to key information and reduce information
overload.

• Transformation-related observations. In order to explain these observations about S, we anticipate that we will
have to compare S to other solutions. Therefore, we require that these observations can be associated with solution
transformations, such as the ones we described in Section 3.3 (e.g. inserting a given non-performed task in a given
employee planning between two given activities).

To sum up, we design an approach for explaining transformation-related observations about a solution. Dealing
with such explanations can be advantageous for both end-users and designers of explanation approaches. Indeed, such
assumptions incite end-users to make their issue explicit by specifying: 1) which observation, in which specific part of
S, they want to question; 2) what alternative solutions they would have expected to have instead of S. This helps then
designers to restrict their examination and propose relevant explanations to end-users in reasonable time.

Although making these assumptions may seem restrictive, we will see below that our approach is able to address a
significant number of observations.

As mentioned in Section 2.5, the primary target audience of our explanations are planners i.e. persons in charge of
designing employee plannings thanks to a WSRP-solving system. In association with our industrial partner DecisionBrain
(see Section 1.1), we enumerated various observations that planners may make about solutions. Many observations relate
to the transformations detailed in Section 3.3. We present below the list of these observations.

List of end-user observation templates. Table 4.1 is a non-exhaustive list of observation templates that end-users
can use to build observations that our approach is able to deal with. Each observation template is characterized by a label,
e.g. (Ins,C), and a template text, e.g. “⟨employee i∗⟩ is not performing ⟨task j∗⟩ just after ⟨activity k∗⟩”.

• The label of an observation template coincides with the label of its related transformation. We recall that the
transformation label is a tuple “(X,Y,Z)” where “X” indicates the family of the transformation (task insertion,
reassignment1, exchanging or reordering), “Y” its category (constant-size, polynomial-size or exponential-size) and
“Z” a variant (see Table 3.1 in Section 3.4).

• Each template text contains one or several symbols ⟨.⟩ which indicate fields that end-users have to specify, using
data from the instance I (e.g. the name of an employee, the id of a task or an activity). We annotated with a
superscript ∗ the indices of employees and tasks involved in the fields of the template in order to differentiate them
from generic indices of tasks and employees.

To illustrate this paragraph, let us recall the introductory example presented in Section 4.1. The observation that
was given as an example, namely “Ellen is not performing task 27 in addition to the activities of her planning”, can be
built from (Ins,E) observation template “⟨Employee i∗⟩ is not performing ⟨task j∗⟩ in addition to the activities of their
planning” by choosing field values “Ellen” and “task 27”.

In this subsection, we described step (A) of Figure 4.2: we specified assumptions about the starting point of our
approach, namely transformation-related observations about a solution, and we presented a list of templates allowing to
formulate such observations in Table 4.1. From now on, we only consider end-user observations that are transformation-
related, like the ones that can be built thanks to Table 4.1 templates. In the next subsection, we move to step (B).

1Note that none of the observation labels coincide with a label corresponding to an assignment transformation (i.e. when “X” is equal to
“Ass”). Actually, assignment transformations can be seen as particular cases of insertion transformations where the inserted task is already
performed by an employee. Thus, in (Ins,C), (Ins,P,a) and (Ins,E) observation templates, if task j∗ is performed by an employee, the observation
templates actually relate to (Ass,C), (Ass,P,a) and (Ass,E) transformations. This allows to reduce the number of observation templates.

33

Label Observation template text

(Ins,C) “⟨Employee i∗⟩ is not performing ⟨task j∗⟩ just after ⟨activity k∗⟩.”
(Ins,P,a) “⟨Employee i∗⟩ is not performing ⟨task j∗⟩ between any pair of consecutive activities of their planning.”
(Ins,P,b) “⟨Employee i∗⟩ is not performing any non-performed task between two consecutive activities of their planning.”
(Ins,P,c) “No employee is performing ⟨task j∗⟩ between two consecutive activities of their planning.”
(Ins,E) “⟨Employee i∗⟩ is not performing ⟨task j∗⟩ in addition to the activities of their planning, regardless of the planning order.”
(Ex,C) “⟨Employee i∗⟩ is not performing ⟨task j∗⟩ rather than ⟨task k∗⟩.”
(Ex,P,a) “⟨Employee i∗⟩ is not performing ⟨task j∗⟩ rather than any of their tasks.”
(Ex,P,b) “⟨Employee i∗⟩ is not performing any non-performed task rather than one of the activities of their planning.”
(Ex,P,c) “No employee is performing ⟨task j∗⟩ rather than one of the activities of their planning.”
(Ex,E) “⟨Employee i∗⟩ is not performing ⟨task j∗⟩ rather than any of their tasks, regardless of the planning order.”
(Ord,C,a) “⟨Employee i∗⟩ is not performing ⟨task j∗⟩ later in their planning, just after ⟨task k∗⟩.”
(Ord,C,b) “⟨Employee i∗⟩ is not performing ⟨task j∗⟩ earlier in their planning, just before ⟨task k∗⟩.”
(Ord,P,a) “⟨Employee i∗⟩ is not performing ⟨task j∗⟩ at a later stage of their planning.”
(Ord,P,b) “⟨Employee i∗⟩ is not performing ⟨task j∗⟩ at an earlier stage of their planning.”
(Ord,P,c) “⟨Employee i∗⟩ is not performing ⟨task j∗⟩ at any other stage of their planning.”
(Ord,E) “⟨Employee i∗⟩ is not performing the activities of their planning in a different order.”

Table 4.1: List of observation templates related to the list of transformations presented in Table 3.1. Each observation
template is characterized by a label and a template text. Without making it explicit, observation templates whose label’s
second term is “C” or “P” assume that end-users do not consider changing the order of activities in the employee planning.
On the opposite, observation templates whose label’s second term is “E” assume that end-users consider that the order of
activities in the employee planning can be changed.

4.2.2 End-user questions about a solution
Step (B) of Figure 4.2 essentially corresponds to end-users defining questions based on observations that they made

about their solution S. As illustrated by the example presented at the beginning of this chapter, from a single observation
(e.g. “Ellen is not performing task 27 in addition to the activities of her planning”), various types of questions can be
defined, including a question asking for a contrastive explanation (“Why is Ellen not performing task 27 in addition to
the activities of her planning?”) or one asking for a counterfactual explanation (“How to make Ellen perform task 27 in
addition to the activities of her planning?”). In our approach, we consider these two types of questions as well as questions
asking for scenario explanations. These questions will then be used as ways to request explanations.

Before presenting how end-user observations can actually be used to build questions of various types, we need to
introduce the notion of instance relaxation. We recall that the data characterizing an instance, as well as the notations
relating to these data, are described in Subsection 3.2.1.

Instance relaxation. We call relaxation of an instance I, any instance I ′ such that the set of feasible solutions of I
is included in the one of I ′. Usually, I ′ is obtained from I by altering the values of some parameters, e.g. by reducing
the duration dtj of one or several tasks, by extending the working time windows [lbei, ubei] of one or several employees,
etc. We also say that I ′ is obtained by relaxing I.

Now, let us introduce the different types of questions.
End-user questions of three different types. From an observation o about S, feasible solution of an instance I,

questions of three different types can be built. Let q be one of these questions, then q can be:
- a contrastive question, i.e. a question asking for a contrastive explanation, in which case,

q = qc(o,S, I) = “Why o is observed in S, solution of I?”;
- a scenario question, i.e. a question asking for a scenario explanation, in which case,

q = qs(o,S, I, I ′) = “o is observed in S, solution of I, but what if I is changed into I ′?”
where the instance I ′ is obtained by relaxing I;

- a counterfactual question, i.e. a question asking for a counterfactual explanation, in which case
q = qh(o,S, I,J ′) = “How to make ¬o possible considering that I can be changed into I ′ ∈ J ′?”

where ¬o is the negation of the observation (e.g. if o is the observation that “Ellen is not performing task 27 in

34

addition to her tasks” then ¬o is the opposite “Ellen is performing task 27 in addition to her tasks”) and J ′ is a set
of instances obtained by relaxing I.

As scenario and counterfactual questions involve other instances than I, respectively I ′ and I ′ ∈ J ′, we will sometimes
refer to I as the original instance, by opposition to I ′ or I ′ ∈ J ′, which we will call relaxations.

In the previous section, we presented a list of end-user observation templates in Table 4.1. From this list, we can build
another list of end-user question templates as follows.

List of end-user question templates. Table 4.2 presents how each observation template in Table 4.1 can be mapped
into three question templates: contrastive, scenario and counterfactual question templates.

Note that, in the above definition of a scenario question, qs(o,S, I, I ′) = “o is observed in S, solution of I, but
what if I is changed into I ′?”, a relaxation I ′ of the original instance I is supposed to be provided. In scenario question
templates, we propose that end-users instead specify the alterations to apply to the parameters of I to obtain I ′, as
alterations are applied only to a few parameters in practice. Similarly, in the above definition of a counterfactual question,
qh(o,S, I,J ′) = “How to make ¬o possible considering that I can be changed into I ′ ∈ J ′?”, a set of instances J ′,
obtained by relaxing I, is supposed to be provided. In counterfactual question templates, we propose that end-users define
this set of instances J ′ by specifying the groups of alterations that they allow to apply to the parameters of I.

To illustrate this paragraph, let us return again to the introductory example presented in Section 4.1. The contrastive,
scenario and counterfactual questions that were given as examples can be built from the three question templates related
to observation template (Ins,E), by choosing field values “Ellen” and “task 27”. For the sake of simplicity, the example of
counterfactual question did not mention any group of alterations to apply to the instance.

Label Type Question template text

(Ins,C)

Contrastive “Why is ⟨employee i∗⟩ not performing ⟨task j∗⟩ just after ⟨activity k∗⟩?”

Scenario “⟨Employee i∗⟩ is not performing ⟨task j∗⟩ just after ⟨activity k∗⟩,
but what if ⟨changes applied to instance I parameter values⟩?”

Counterfactual “How to make “⟨employee i∗⟩ perform ⟨task j∗⟩ just after ⟨activity k∗⟩,
considering ⟨alterations that can be applied to instance I parameter values⟩?”

...
...

...

(Ins,E)

Contrastive “Why is ⟨employee i∗⟩ not performing ⟨task j∗⟩ in addition to the activities of their planning?”

Scenario “⟨Employee i∗⟩ is not performing ⟨task j∗⟩ in addition to the activities of their planning,
but what if ⟨changes applied to instance I parameter values⟩?”

Counterfactual “How to make ⟨employee i∗⟩ perform ⟨task j∗⟩ in addition to the activities of their planning,
considering ⟨alterations that can be applied to instance I parameter values⟩?”

...
...

...

(Ord,E)

Contrastive “Why is ⟨employee i∗⟩ not performing the activities of their planning in a different order?”

Scenario “⟨Employee i∗⟩ is performing the activities of their planning in a certain order,
but what if ⟨changes applied to instance I parameter values⟩?”

Counterfactual “How to make ⟨employee i∗⟩ perform the activities of their planning in a different order,
considering ⟨alterations that can be applied to instance I parameter values⟩?”

Table 4.2: List of question templates based on the list of observation templates presented in Table 4.1. Each question
template is characterized by a label, a type and a template text.

In this subsection, we described step (B) of the explanation process represented Figure 4.2: we presented how questions
of three different types, either contrastive, scenario or counterfactual, can be built from end-users observations about a
solution, and we provided a list of templates in order to build such questions. From now on, we consider that end-users
ask questions built thanks to the templates of Table 4.1 in order to request explanations about their solution. In the
next section, we present how in our approach such questions are then processed through a series of mathematical steps
corresponding to the causality diagnosis, from (C) to (E) in Figure 4.2, leading to the definition of explanations.

35

4.3 Mathematical steps - From questions to explanations

4.3.1 Decision-problem interpreted questions
Assume that end-users have defined a question q about a solution S, thanks to one of the templates of Table 4.2.

While S may be seen by end-users as a group of routes and schedules, represented in a pair of graph and chart like in
Figure 3.1, S is first and foremost a solution of a CO-problem instance. In other words, S is an object from the field of
CO, obtained a priori through an optimization process. Therefore, while q is expressed in common language by end-users,
it seems opportune to consider q through the prism of CO and look for an explanation answering q using CO-related
concepts such as feasibility, optimality, neighborhood, etc. That is why we propose that the next step towards determining
an explanation, step (C) in Figure 4.2, be to translate q into a question involving mathematical terms from the field of
optimization. Performing this translation leads us to introduce a generic decision problem. Thus, we call such rephrasing
of q, the decision-problem interpreted question associated with q, noted dpq(q).

Before presenting dpq(q), we first need to introduce the generic notions of neighborhood and decision problem related
to an observation, which are involved in the definition of dpq(q). We recall that we introduce the notion of neighborhood
of a solution S related to a transformation tf in Section 3.3 as the subset of solutions, noted N (tf,S) produced by applying
this transformation on S.

Neighborhood related to an observation. Given an observation o about a solution S, we call neighborhood of S
related to the observation o the subset of solutions obtained by applying the transformation tf related to o on S. As there
is a correspondence between observations and transformations, we make a slight abuse of the neighborhood notation and
note N (o,S) the neighborhood of S related to the observation o, using o instead of tf in N (tf,S). We recall that we
name the solutions in N (o,S) neighbors or neighboring solutions of S.

Let us illustrate again this notion of neighborhood, but here related to an observation. Consider the feasible solution S
represented in Figure 4.1, more specifically Ellen’s planning (R1, C1). An observation about S based on (Ins,C) template
is o1 = “Ellen is not performing task 27 just after task 17”. Then, the neighborhood N (o1,S) related to o1 is the set
made of all the solutions S ′ = ((R′

i, C′
i))i∈E such that:

- the planning (R′
i, C′

i) of any employee i ∈ E other than Ellen is the same as (Ri, Ci) in S;
- Ellen’s planning (R′

1, C′
1) is route-equal (see Subsection 3.2.1) to the one obtained from (R1, C1) by inserting task

27 between tasks 17 and 8 in R1 and the start time st27, with an arbitrary value, between st17 and st8 in C1.
This neighborhood N (o1,S) is represented in Figure 4.3. Ellen’s route now includes task 27 between tasks 17 and 8, as it
is indicated with dashed lines. Her schedule is a tuple of start times (std1 , st7, st30, st3, st26, st1, st17, st27, st8, str1),
whose values may be arbitrarily chosen. In order to translate it graphically, Ellen’s schedule is represented by a large dashed
rectangle including all the tasks performed by her.

N (o1,S) =

 14.5 14.75 15.0 15.25 15.5 15.75 16.0 16.25

47.25

47.5

47.75

48.0

48.25

48.5

longitude

lat
itu

de

El

Al

Ad

Fa

Ca

12

15

31

1

3 7

8

17

26

27

30
6

14

16

19
20

25

28

910

11

24

4

13

18

21
2229

25

23

El

Al

Ad

Fa

Ca

7AM 9AM 11AM 1PM 3PM 5PM 7PM

hour

7, 30, 3, 26, 1, 17, 27, 8

28 16 25 14 20 6 19

11 9 10 24

13 18 21 29 4 22

5 23 2


Figure 4.3: Neighborhood N (o1,S) of the solution S represented in Figure 3.1 related to observation o1 = “Ellen is not
performing task 27 just after task 17”.

Decision problem related to an observation. Given an end-user observation o about S, feasible solution of instance
I, we call decision problem (related to the observation o), noted dp(o,S, I), the yes-no problem: “Is there a neighboring
solution S ′ ∈ N (o,S) that is feasible and better than S w.r.t. I?”. There are two possible outcomes to dp(o,S, I):

- a positive outcome, when the answer is “yes”, which we note dp(o,S, I) = “yes”;
- a negative outcome, when the answer is “no”, which we note dp(o,S, I) = “no”.

36

Note that if S is a solution obtained thanks to a WSRP-solving system, S should be a good solution, possibly even an
optimal one, with respect to its instance I. Then, the outcome to dp(o,S, I) is more likely to be negative than positive.
Still, since the WSRP is NP-hard, optimization systems solving the WSRP are generally based on approximate optimization
methods, which produce good but sub-optimal solutions. In this case, it may be possible to improve these solutions by
applying transformations (e.g. insertion, exchange, reordering) such as the ones related to the end-user observation o.
Thus, we cannot exclude the possibility of getting a positive outcome to dp(o,S, I). Besides, if we now consider I ′, a
relaxation of I, getting a positive outcome to dp(o,S, I ′) is even more likely to happen.

Now that the generic notion of decision problem has been defined, we can introduce the decision-problem interpreted
question dpq(q) associated with an end-user question q.

Decision-problem interpreted question. Given a question q, we define the decision-problem interpreted question
associated with q, noted dpq(q), as follows.

• If q is a contrastive question, i.e. q = qc(o,S, I), then
dpq(q) = “Is there a neighboring solution S ′ ∈ N (o,S) that is feasible and better than S w.r.t. I?︸ ︷︷ ︸

= dp(o,S, I)
• If there is such an S ′, why not considering S ′ instead of S?
• If there is not, why?”

• If q is a scenario question, i.e. q = qs(o,S, I, I ′), with I ′ relaxation of I, then
dpq(q) = “Is there a neighboring solution S ′ ∈ N (o,S) that is feasible and better than S w.r.t. I ′?︸ ︷︷ ︸

= dp(o,S, I ′)
• If there is such an S ′, what is S ′ content?
• If there is not, why?”

• If q is a counterfactual question, i.e. q = qh(o,S, I,J ′), with J ′ set of relaxations of I, then
dpq(q) = “Is there I ′ ∈ J ′ s.t. there exists S ′ ∈ N (o,S) that is feasible and better than S w.r.t. I ′︸ ︷︷ ︸

= (dp(o,S, I ′) = “yes”)

?

• If there is such an I ′, what are I ′ and S ′ contents?
• If there is not, why?”

Thus, dpq(q) can be seen as another way to express q using mathematical terms involving one or several decision
problems dp(.). However, in contrast to q, dpq(q) explicitly states what we need to find for answering q: we need to
determine whether there exists a neighboring solution S ′, which is feasible and better than the original solution S, with
respect to some instance (either the original instance I or a relaxation I ′). Two cases can occur:

• the positive case, when there exists such a neighboring solution S ′, in which case the answer to dpq(q) essentially
consists in presenting S ′.

• the negative case, when no such solutions exist, then reasons must be found.

As we did it in the above paragraph, we will sometimes refer to I and S as the original instance and solution to
distinguish them from other solutions and instances, such as the neighboring solution S ′ and the relaxation I ′ involved in
the definition of dpq(q).

Two comments can be made about decision-problem interpreted questions.
First, in line with our remark on the possibility of obtaining a positive or negative outcome, when S is a solution that

has been obtained thanks to an optimization system solving an instance I, then: if q is a contrastive question, it is very
likely that the answer to dpq(q) falls into the negative case; if q is a scenario or a counterfactual question, depending on
the alterations applied to I, the answer to dpq(q) may fall in either cases.

Second, the definition of a decision-problem interpreted question for scenario questions is almost a particular case of
the one for counterfactual questions: indeed dpq(qs(o,S, I, I ′)) almost coincide with dpq(qh(o,S, I, {I ′})). This makes
sense since a scenario question considers a unique user-defined relaxation while the counterfactual question considers a set
of user-defined relaxations. Furthermore, the definition of a decision-problem interpreted question for scenario questions
is also close to the one for contrastive questions: indeed dpq(qs(o,S, I, I ′)) almost coincide with dpq(qc(o,S, I ′)). As
we will see it in Chapter 5, this will influence the way we compute scenario explanation texts since we will be able to use
computation techniques very similar to the ones used to generate contrastive explanation texts.

Even though dpq(q) is expressed in mathematical terms, we still need to figure out how to find the reasons explaining
why a negative case occurs. This is the purpose of step (D), in Figure 4.2, which consists in rephrasing dpq(q) into another
question involving an ILP model. Next subsection focuses on this step.

37

lex max
(∑

i∈E

∑
j∈T

∑
k∈Ai

k ̸=di,j

Uijk dtj , −
∑
i∈E

∑
j∈Ai

j ̸=ri

∑
k∈Ai

k ̸=di,j

Uijk trjk

)
(M2.1) ≡ (M1.1)

s.t.∑
k∈Ai
k ̸=di

Ui,di,k = 1 ∀ i ∈ E (M2.2) ≡ (M1.2)

...
...

... .

Tj + dtj ≤
∑
i∈E

Ui,j,ri(ubei − trjri) +
(

1−
∑
i∈E

Ui,j,ri

)
ubtj ∀ j ∈ T (M2.11) ≡ (M1.11)

φ(X) ∈ N (o,S) (M2.12)(∑
i∈E

∑
j∈T

∑
k∈Ai

k ̸=di,j

Uijk dtj , −
∑
i∈E

∑
j∈Ai

j ̸=ri

∑
k∈Ai

k ̸=di,j

Uijk trjk

)
≥ (twt(S), −trt(S)) (M2.13)

Tj ∈ N ∀ j ∈ T

Uijk ∈ {0, 1} ∀ i ∈ E , ∀ j ∈ Ai \ {ri}, ∀ k ∈ Ai \ {di, j}

Model 2: Foil model fm(o,S, I).

4.3.2 Foil-model interpreted questions

In this subsection, we delve into step (D) of Figure 4.2. The purpose of this step is to leverage ILP modeling in order
to rephrase the decision-problem interpreted question dpq(q) into a question referring to one or several ILP models. Thus,
we will be able to use such ILP models to identify reasons behind a negative case when it occurs. As we call foil models
these ILP models, we call foil-model interpreted question the rephrased question relying on foil models.

In the paragraphs below, we start by providing the definition of a foil model and tell the reasons behind this name of
foil model. Then, we give the definition of the foil-model interpreted question.

Foil model related to an observation. Given an observation o about S, feasible solution of an instance I, we call foil
model, noted fm(o,S, I), the ILP model obtained by extending the main model mm(I) (see Model 1 in Subsection 3.2.1),
so that the answer to dp(o,S, I) matches the one to “Is fm(o,S, I) feasible?”. We recall that there are two sets of decision
variables in mm(I): for each task j ∈ T , the integer decision variable Tj defines the time at which j starts to be performed
by an employee - if j is performed; for each employee i ∈ E and each pair of activities (j, k) ∈ (Ai \ {ri})× (Ai \ {di, j}),
the binary decision variable Uijk is equal to 1 if i performs the activity j and then moves to the activity k, and to 0
otherwise. As shown in Model 2, fm(o,S, I) is obtained from mm(I) by keeping the same decision variables, objective
function and constraints and by adding new constraints defined as follows.

• Neighborhood constraints (12) are considered in fm(o,S, I) in order to ensure that its solutions are neighboring
ones, i.e., solutions satisfying the foil of q - hence the name of this model. Expressing these constraints in terms of
(Tj) and (Uijk) depends on the structure of N (o,S), that is why we simply write them in short φ(X) ∈ N (o,S).

• Improvement constraints (13) are considered in fm(o,S, I) in order to force its solutions to be better than the
original solution S.

We give the name of foil model to fm(o,S, I) with reference to the terminology related to contrastive questions and
explanations. As seen in Section 2.3, a contrastive question has the following form “Why is this fact instead of this foil?”,
where “this fact” is something observed, something which occurs, and “that foil” is an alternative to it, something which
could have occurred. The foil in the contrastive question qc(o,S, I) = “Why o is observed in S, solution of I?” is ¬o,
which is observed in the neighboring solutions of N (o,S). Thus, as fm(o,S, I) enforces solutions to be in N (o,S), we
found the term “foil model” to be aptly descriptive.

Let us illustrate neighborhood constraints on an example. Consider again S represented in Figure 4.1, feasible solution
of I, as well as the observation o1 = “Ellen is not performing task 27 just after task 17”. Then, neighborhood constraints
in fm(o1,S, I) are the following:

- for i ∈ E \{1}, all the variables (Uijk) and all the variables (Tj) such that j is in Ri are set to their value in φ−1(S);
- all the variables (U1jk) are set to their value in φ−1(S), except for U1,17,8 which is set to 0 and for U1,17,27 and

U1,27,8 which are set to 1.

38

Now that we have introduced the foil model fm(o,S, I), we can continue with the definition of the foil-model
interpreted question, which we denote fmq(q). Essentially, fmq(q) rephrases the decision-problem interpreted question
dpq(q) by replacing dp(o,S, I) with “Is fm(o,S, I) feasible?”. Then, similarly to dpq(q), fmq(q) structure highlights
that there are two cases when answering q: positive and negative.

Foil-model interpreted question. Given a question q, we define the foil-problem interpreted question associated
with q, noted fmq(q), as follows.

• If q is a contrastive question, i.e. q = qc(o,S, I), then
fmq(q) = “Is fm(o,S, I) feasible?

• If it is feasible, i.e. there exists X , feasible ILP-solution of fm(o,S, I),
why not considering S ′ = φ(X) instead of S?

• If not, why?”
• If q is a scenario question, i.e. q = qs(o,S, I, I ′), then

fmq(q) = “Is fm(o,S, I ′) feasible?
• If it is feasible, i.e. there exists X , feasible ILP-solution of fm(o,S, I ′),

what is S ′ = φ(X) content?
• If not, why?”

• If q is a counterfactual question, i.e. q = qh(o,S, I,J ′), then
fmq(q) = “Is there I ′∈ J ′ s.t. fm(o,S, I ′) is feasible?

• If there is such I ′, with X , feasible ILP-solution of fm(o,S, I ′),
what are I and φ(X) = S ′ contents?

• If there is not, why?”
Thanks to fmq(q), it is clearer where to find reasons when a negative case arises: we should look for infeasible subsets

of constraints making the foil model(s) infeasible. Thus, we can now move on to the next step and define the notion of
explanation in our context.

4.3.3 Explanations
This last subsection focuses on step (E) of Figure 4.2 and presents the way we model explanations. In line with the

fact that the foil-model interpreted question fmq(q) may have either a positive or a negative answer, we define two kinds
of explanations: positive and negative explanations.

Before defining these two kinds of explanations, let us give some intuitions about them. Consider that end-users make
an observation o about the solution S and raise a question q (either contrastive q = qc(o,S, I), scenario q = qs(o,S, I, I ′)
or counterfactual q = qh(o,S, I,J ′). If it exists, a positive explanation basically confirms that end-users are right to wonder
about observing o in S because there exists a neighboring solution S ′ that is feasible and better than S w.r.t. a certain
instance (either I, I ′ an end-user-defined relaxation of I or I ′ ∈ J ′ a relaxation to identify in the end-user-defined set
J ′). On the opposite, a negative explanation basically confirms that S is a good quality solution because none of the
neighboring solutions of N (o,S) are feasible and better than S w.r.t. to certain instances, and it provides a justification
to that affirmation.

We now give the definition of positive explanations.
Positive explanation. A positive explanation x(q), answering a question q, is defined when the answer to fmq(q)

falls into the positive case.
• If q is a contrastive question, i.e. q = qc(o,S, I), then x(q) is

because S was not an optimal solution then o could be observed in S,

however ¬o can be observed in S ′, with S ′ feasible w.r.t. I and S ′≥I S
where S ′ = φ(X) with X feasible ILP-solution of fm(o,S, I).

• If q is a scenario question, i.e. q = qs(o,S, I, I ′), then x(q) is
o is observed in S, solution of I but by changing I into I ′

then ¬o can be observed, for instance in S ′ = φ(X) with S ′ feasible w.r.t. I ′ and S ′≥I′ S
where S ′ = φ(X) with X feasible ILP-solution of fm(o,S, I ′).

• If q is a counterfactual question, q = qh(o,S, I,J ′), then x(q) is
o is observed in S, solution of I but by changing I into I ′∈ J ′

then ¬o can be observed, for instance in S ′ = φ(X) with S ′ feasible w.r.t. I ′ and S ′≥I′ S
where I ′∈ J ′ and S ′ = φ(X) with X feasible ILP-solution of fm(o,S, I ′).

39

On the opposite, when answering fmq(q) falls into the negative case, a negative explanation is given. We consider
two kinds of negative explanations. The first kind aims to provide an exhaustive and complete justification to the negative
case. In other words, it aims at providing a proof. The second kind seeks to provide a convincing example to illustrate the
negative case, not a mathematical proof of it. In other words, it seeks to provide an argument. In the following paragraphs,
we define these two kinds of negative explanations. For proof-like ones, we resort to the notion of infeasible subset of
constraints of an ILP model, i.e. a subset of constraints such that the set of solutions satisfying these constraints is empty.

Proof-like negative explanation. A proof-like negative explanation x(q), answering a question q, can be defined
when the answer to fmq(q) falls into the negative case.

• If q is a contrastive question, i.e. q = qc(o,S, I), then x(q) is
U is an infeasible subset of constraints of fm(o,S, I),

therefore not (∃ S ′∈ N (o,S) | feasible w.r.t. I, S ′ ≥I S) .

• If q is a scenario question, i.e. q = qs(o,S, I, I ′), then x(q) is
U is an infeasible subset of constraints of fm(o,S, I ′),

therefore not (∃ S ′∈ N (o,S) | feasible w.r.t. I ′, S ′ ≥I′ S) .

• If q is a counterfactual question, q = qh(o,S, I,J ′), then x(q) is
for all I ′∈ J ′, there exists U an infeasible subset of constraints of fm(o,S, I ′),

therefore not (∃ I ′∈ J ′, ∃ S ′∈ N (o,S) | feasible w.r.t. I ′, S ′≥I′ S) .

Note that in this definition, the infeasible subset of constraints U is not required to be inclusion-wise minimal. Actually,
since we aim at narrating x(q), we are rather interested in finding a subset U that we can narrate, i.e. describe in few
sentences, rather than one that is inclusion-wise minimal. Besides, in order to find infeasible subset of constraints, we will
not directly solve and assess the feasibility of foil models, but we will rather resort to polynomial algorithms, when possible.
These considerations about computing and narrating infeasible subset of constraints will be discussed in Chapter 5.

Argument-like negative explanation. An argument-like negative explanation x(q), answering a question q, can be
defined when the answer to fmq(q) falls into the negative case.

• If q is a contrastive question, i.e. q = qc(o,S, I), then x(q) is
not (∃ S ′∈ N (o,S) | feasible w.r.t. I, S ′ ≥I S) .

For example, S ′∈ N (o,S) but not (feasible w.r.t. I, S ′ ≥I S) .

• If q is a scenario question, i.e. q = qs(o,S, I, I ′), then x(q) is
not (∃ S ′∈ N (o,S) | feasible w.r.t. I ′, S ′ ≥I′ S) .

For example, S ′∈ N (o,S) but not (feasible w.r.t. I, S ′ ≥I′ S) .

• If q is a counterfactual question, q = qh(o,S, I,J ′), then x(q) is
not (∃ I ′∈ J ′, ∃ S ′∈ N (o,S) | feasible w.r.t. I ′, S ′≥I′ S) .

For example, I ′∈ N (o,S), S ′∈ N (o,S) but not (feasible w.r.t. I, S ′ ≥I′ S) .

Note that in this definition, the neighboring solution S ′ ∈ N (o,S) that is used as an example is not required to satisfy
any property, e.g. some kind of optimality. However, in order to be convincing, we need to find a striking example for S ′.
In Chapter 5, we will discuss how we choose and compute such a striking example for S ′. Besides, a similar comment can
be made about the instance relaxation I ′ selected in the set J ′ that is involved in the counterfactual explanation.

4.4 Conclusion
Throughout this chapter, we described steps from (A) to (E) of the explanation process depicted in Figure 4.2.

These steps lead from an end-user observation o about a solution S, to a question q and finally to an explanation x(q).
We introduce the notions of positive, proof-like negative and argument-like negative explanations. Questions and their
corresponding explanations can be of three types: either contrastive, scenario or counterfactual. Table 4.3 provides a
concise comparison of how we model these steps for each of these types.

At step (E), explanations are essentially formulated in mathematical terms. Especially, proof-like negative explanations
are based on infeasible subsets of constraints, a concept which has no practical meaning for non-experts in combinatorial
optimization. Therefore, these explanations are not suitable products to communicate to end-users (see Section 2.2).
Besides, we have not yet discussed how to obtain in practice the pieces of information that are involved in such explanations.
In other words, we have not yet discussed how to compute an explanation. Thus, in Chapter 5, we will describe how
explanations can be both computed and narrated into texts for end-users.

40

C
on

tr
as

tiv
e

Sc
en

ar
io

C
ou

nt
er

fa
ct

ua
l

Q
ue

st
io

n
q

q
=

q c
(o

,S
,I

)=
{ “W

hy
o

is
ob

se
rv

ed
in
S,

so
lu

tio
n

of
I?

”

q
=

q s
(o

,S
,I

,I
′)

=
{ “o

is
ob

se
rv

ed
in
S,

so
lu

tio
n

of
I,

bu
tw

ha
ti

fI
is

ch
an

ge
d

in
to
I′

?”

wh
er

e
th

e
in

st
an

ce
I′

is
ob

ta
in

ed
by

re
lax

in
g
I

q
=

q h
(o

,S
,I

,J
′)

=
  “o

is
ob

se
rv

ed
in
S,

so
lu

tio
n

of
I,

bu
th

ow
to

ob
se

rv
e
¬o

co
ns

id
er

in
g

th
at
I

ca
n

be
ch

an
ge

d
in

to
I′
∈
J

′ ?
”

wh
er

e
J

′
is

a
se

to
fi

ns
ta

nc
es

ob
ta

in
ed

by
re

lax
in

g
I

N
ei

gh
bo

rh
oo

d
N

(o
,S

)
Se

to
fs

ol
ut

io
ns

ob
ta

in
ed

fro
m
S

by
ap

pl
yin

g
th

e
tra

ns
fo

rm
at

io
n

re
lat

ed
to

o

D
ec

isi
on

pb
.

d
p
(o

,S
,I

)
“I

st
he

re
a

ne
ig

hb
or

in
g

so
lu

tio
n
S′
∈
N

(o
,S

)
th

at
is

fe
as

ib
le

an
d

be
tte

rt
ha

n
S

w.
r.t

.I
?”

D
ec

isi
on

-p
b.

in
te

rp
re

te
d

qu
.

d
p
q(

q)

d
p
(o

,S
,I

)
+

“I
ft

he
re

is
su

ch
an
S′

,
wh

y
no

tc
on

sid
er

in
g
S′

in
st

ea
d

of
S?

If
th

er
e

is
no

t,
wh

y?
”

d
p
(o

,S
,I

′)
+

“I
ft

he
re

is
su

ch
an
S′

,w
ha

ti
sS

′
co

nt
en

t?
If

th
er

e
is

no
t,

wh
y?

”

“I
st

he
re
I′
∈
J

′
s.t

.(
d
p
(o

,S
,I

′)
=

‘ye
s’)

?
If

th
er

e
is

su
ch

an
I′

,w
ha

ta
re
I′

an
d
S′

co
nt

en
ts

?
If

th
er

e
is

no
t,

wh
y?

”

Fo
il

m
od

el
f

m
(o

,S
,I

)
f

m
(o

,S
,I

)
ob

ta
in

ed
fro

m
m

m
(I

)
by

ad
di

ng
ne

ig
hb

or
in

g
co

ns
tra

in
ts

ba
se

d
on
N

(o
,S

)
an

d
by

ad
di

ng
an

im
pr

ov
em

en
tc

on
st

ra
in

t

Fo
il-

m
od

el
in

te
rp

re
te

d
qu

.
f

m
q(

q)

“I
sf

m
(o

,S
,I

)
fe

as
ib

le?
If

it
fe

as
ib

le,
i.e

.
th

er
e

ex
ist

sX
,f

ea
sib

le
IL

P-
so

lu
tio

n
of

f
m

(o
,S

,I
),

wh
y

no
tc

on
sid

er
in

g
S′

=
φ

(X
)

in
st

ea
d

of
S?

If
no

t,
wh

y?
”

“I
sf

m
(o

,S
,I

′)
fe

as
ib

le?
If

it
fe

as
ib

le,
i.e

.
th

er
e

ex
ist

sX
,f

ea
sib

le
IL

P-
so

lu
tio

n
of

f
m

(o
,S

,I
′),

wh
at

is
φ

(X
)=
S′

co
nt

en
t?

If
no

t,
wh

y?
”

“I
st

he
re
I′
∈
J

′
s.t

.f
m

(o
,S

,I
′)

is
fe

as
ib

le?
If

th
er

e
is

su
ch
I′

,w
ith
X

,f
ea

sib
le

IL
P-

so
lu

tio
n

of
f

m
(o

,S
,I

′),
wh

at
ar

e
I

an
d

φ
(X

)=
S′

co
nt

en
ts

?
If

th
er

e
is

no
t,

wh
y?

”

Po
sit

iv
e

ex
pl

an
at

io
n

x
(q

)

be
ca

us
e
S

wa
sa

ct
ua

lly
no

ta
n

op
tim

al
th

en
o

co
ul

d
be

ob
se

rv
ed

in
S,

ho
we

ve
r¬

o
ca

n
be

ob
se

rv
ed

in
S′

,

wi
th
S′

fe
as

ib
le

w.
r.t

.I
an

d
S′
≥

I
S

(w
he

re
S′

=
φ

(X
)

wi
th
X

fe
as

ib
le

IL
P-

so
lu

tio
n

of
f

m
(o

,S
,I

))

o
is

ob
se

rv
ed

in
S,

so
lu

tio
n

of
I

bu
t

by
ch

an
gi

ng
I

in
to
I′

th
en
¬o

ca
n

be
ob

se
rv

ed
,

fo
ri

ns
ta

nc
e

in
S′

=
φ

(X
)

wi
th
S′

fe
as

ib
le

w.
r.t

.I
′

an
d
S′
≥

I
′
S

(w
he

re
S′

=
φ

(X
)

wi
th
X

fe
as

ib
le

IL
P-

so
lu

tio
n

of
f

m
(o

,S
,I

′))

o
is

ob
se

rv
ed

in
S,

so
lu

tio
n

of
I

bu
t

by
ch

an
gi

ng
I

in
to
I′
∈
J

′

th
en
¬o

ca
n

be
ob

se
rv

ed
,

fo
ri

ns
ta

nc
e

in
S′

=
φ

(X
)

wi
th
S′

fe
as

ib
le

w.
r.t

.I
′

an
d
S′
≥

I
′
S

(w
he

re
I′
∈
J

′
an

d
S′

=
φ

(X
)

wi
th
X

fe
as

ib
le

IL
P-

so
lu

tio
n

of
f

m
(o

,S
,I

′))

P
ro

of
-li

ke
ne

ga
tiv

e
ex

pl
an

at
io

n
x

(q
)

U
is

an
in

fe
as

ib
le

su
bs

et
of

co
ns

tra
in

ts
of

f
m

(o
,S

,I
)

th
er

ef
or

e
no

t(
∃
S′
∈
N

(o
,S

)
|S

′
fe

as
ib

le
w.

r.t
.I

,
S′
≥

I
S)

U
is

an
in

fe
as

ib
le

su
bs

et
of

co
ns

tra
in

ts
of

f
m

(o
,S

,I
′)

th
er

ef
or

e
no

t(
∃
S′
∈
N

(o
,S

)
|S

′
fe

as
ib

le
w.

r.t
.I

′ ,
S′
≥

I
′
S)

fo
ra

ll
I′
∈
J

′ ,
th

er
e

ex
ist

sU
an

in
fe

as
ib

le
su

bs
et

of
co

ns
tra

in
ts

of
f

m
(o

,S
,I

′)
th

er
ef

or
e

no
t(
∃
I′
∈
J

′ ,
∃
S′
∈
N

(o
,S

)
|f

ea
sib

le
w.

r.t
.I

′ ,
S′
≥

I
′
S)

A
rg

um
en

t-
lik

e
ne

ga
tiv

e
ex

pl
an

at
io

n
x

(q
)

no
t(
∃
S′
∈
N

(o
,S

)
|

fe
as

ib
le

w.
r.t

.I
,
S′
≥

I
S)

.

Fo
ri

ns
ta

nc
e,
S′
∈
N

(o
,S

)
bu

t
no

t(
fe

as
ib

le
w.

r.t
.I

,
S′
≥

I
S)

no
t(
∃
S′
∈
N

(o
,S

)
|

fe
as

ib
le

w.
r.t

.I
′ ,
S′
≥

I
′
S)

.

Fo
ri

ns
ta

nc
e,
S′
∈
N

(o
,S

)
bu

t
no

t(
fe

as
ib

le
w.

r.t
.I

,
S′
≥

I
′
S)

.

no
t(
∃
I′
∈
J

′ ,
∃
S′
∈
N

(o
,S

)
|f

ea
sib

le
w.

r.t
.I

′ ,
S′
≥

I
′
S)

.

Fo
ri

ns
ta

nc
e,
I′
∈
N

(o
,S

),
S′
∈
N

(o
,S

)
bu

t
no

t(
fe

as
ib

le
w.

r.t
.I

,
S′
≥

I
′
S)

.

Ta
bl

e
4.

3:
Su

m
m

ar
y

of
th

e
m

ain
co

nc
ep

ts
in

vo
lve

d
in

th
e

m
od

eli
ng

of
th

e
qu

es
tio

n-
to

-e
xp

lan
at

io
n

pa
th

wa
y

fo
re

ac
h

of
th

e
th

re
e

ty
pe

so
fe

xp
lan

at
io

ns
.

41

42

Chapter 5 Approach for generating explanation texts
5.1 Introduction

As described in Chapter 3, this thesis aims at developing techniques for explaining solutions of an optimization problem
to the end-users of a system solving this problem. In Section 3.2, we specified the optimization problem we focus on: a
use case of Workforce Scheduling and Routing Problem (WSRP), modeled as a bi-objective Integer Linear Program (ILP)
which we refer to as main model. In Section 3.3, we detailed various transformations of solutions (e.g. given the solution
represented in Figure 3.1, by inserting task 27 in Ellen’s planning between every pair of consecutive activities). Such
transformations define solution neighborhoods (e.g. the solutions obtained by applying the above-mentioned insertion).

In Chapter 4, we described our approach for modeling mathematically explanations about solutions. It is summarized
in Figure 4.2. Suppose that end-users have a solution that is feasible with respect to an instance and want to obtain
explanations about this solution. We usually refer to the end-users’ solution and instance as the current solution and
the current instance, by opposition to other solutions and instances that may be identified as part of the explanations.
The starting point of our approach is an observation, made by end-users, about the current solution (e.g. “Ellen is not
performing task 27 between any pair of consecutive activities of her planning”). Observations are supposed to be related
to a solution transformation (e.g. the above-mentioned insertion) (see Subsection 4.2.1). Then, from their observation,
end-users express a question (e.g. “Why is Ellen not performing task 27 between any pair of consecutive activities of her
planning?”). We considered three forms of questions corresponding to three types of explanations (see Subsection 4.2.2).
First, “why” questions are associated with contrastive explanations, whose aim is to clarify why one fact (the observation
made about the current solution) occurred in contrast to another. “What if” questions are associated with scenario
explanations describing how changes in the parameters of the current instance affect the observation made about the
current solution. Changes of instance parameters are assumed to be set by end-users and be such that they define a
relaxation of the current instance, i.e. an instance whose set of feasible solutions includes the one of the current instance.
Third, “How to” questions are associated with counterfactual explanations which aim at identifying what parameters could
be changed in the current instance and by how much, within a certain range, so as to make a solution expected by end-users
feasible and better than the current one. The allowed changes of instance parameters, in number and magnitude, are
assumed to be defined by end-users and to be such that they define again relaxations of the current instance. Finally,
in our modeling approach, a series of mathematical steps leads from the end-user question to an explanation expressed
in mathematical terms (e.g. “Ellen is not performing task 27 between any pair of consecutive activities of her planning”
because a subset of constraints of an ILP model, that we called foil model, is infeasible) (see Subsection 4.3.3).

Chapter 4 dealt with the explanation process from observations to mathematical explanations, spanning from step (A)
to (E) in Figure 4.2. However, explanations expressed in mathematical terms (e.g. using infeasible subsets of constraints)
are not intelligible for end-users. Thus, in accordance with our guideline (G1) presented in Section 2.2, we must address
the crucial step (F) of producing explanation texts that are adapted to end-users. In this chapter, we elaborate on our
methods for generating automatically user-friendly explanation texts. While the methods in [LGMO22, LGMO23] focused
on contrastive and counterfactual explanation types, this chapter extends them to encompass all three explanation types.

A key notion in our generation approach is the one of support content, which is either a support solution in the case
of contrastive and scenario explanations, or a support relaxation-solution pair in the case of counterfactual ones. Suppose
that, in addition to the current instance and solution, end-users have a question based on an observation about this
solution. Since observations are assumed to be related to transformations that define neighborhoods, this question can
be related to a neighborhood. Then, intuitively, the support solution is the “best” neighboring solution. It is defined as
follows: among all the solutions of this neighborhood, the support solution is the best feasible one or, in the absence
of feasible solutions in the neighborhood, it is the nearest-to-feasibility one - where the notion of distance to feasibility
will be specified in this chapter. In the context of contrastive explanations, the feasibility and the quality of the support
solution are measured with respect to the current instance; in the context of scenario explanations, they are measured
with respect to the relaxation specified by the end-users in their scenario question. As regards counterfactual explanations,
the support content is not only made of a solution, the support solution, but also of an instance, the support relaxation.
Intuitively the support relaxation is the “best” relaxation, in terms of magnitude and numbers of parameter alterations,
associated with the “best” support solution we can get. Regardless of the type of explanations, the purpose of the support
contents is to provide explanatory information that can be exploited within explanation texts. Especially, in the case where
a support solution is infeasible (with respect to the current instance or a relaxation, depending on the type of explanations),
infeasible subsets of constraints can be identified and narrated within explanation texts thanks to the support contents.
In our approach, explanation texts are built thanks to template texts which are filled with the explanatory information
obtained from the support contents. To be consistent with the observation questioned by the end-users, the template texts
are also filled in with some observation-dependent predefined texts that we call typical expressions.

43

Finally, in the perspective of integrating the generation of explanation texts within an interactive system where end-users
ask questions and obtain explanations in return (see Chapter 6), we look for designing algorithms generating explanation
texts within a time frame that is compatible with end-users’ near-real-time usage of explanations. Therefore, in this
chapter, we also study the numerical performances of our algorithms for generating explanation texts.

The remainder of this chapter is organized as follows. Section 5.2 is a preliminary section which presents the typical
expressions related to observations. Then, from Section 5.3 to Section 5.5, for each of the three types of explanations,
namely contrastive, scenario and counterfactual, we describe our approach for generating explanation texts, including the
algorithms used for identifying the support contents. Along with these algorithms, we provide some numerical analysis
about the performances of these algorithms.

5.2 Typical expressions
Suppose that end-users have a question related to an observation about a solution - the question and observation being

based on templates from Tables 4.1 and 4.2. In this chapter, we will show how to build an explanation text answering such
a question by concatenating and filling in pieces of template texts. On one hand, in order to produce a final explanation text
that is consistent with the question, some parts of the text must refer specifically to its related observation. On the other
hand, in order not to design a custom explanation template text for every single observation, every single explanation type
(contrastive, scenario or counterfactual) and every single explanation case (positive, proof-like negative, argument-like),
we must bring out and exploit some genericity in this wide range of explanation template texts.

To comply with this need to be both specific and generic, we introduce the notion of typical expressions. These are texts
corresponding to generic ideas (e.g. the “neighbors” i.e. neighboring solutions) but which can be written in specific terms
depending on the observation (e.g. the “solutions obtained by inserting ⟨task j∗⟩ just after ⟨activity k∗⟩ in ⟨employee i∗⟩’s
planning” for a question based on (Ins,C) observation template).

Typical expressions. Table 5.1 associates each observation label listed in Table 4.1 with several typical expressions,
which are pairs of generic names and specific template texts. Given an observation, we detail below the essence of the
template text corresponding to each generic name.

• “⟨the fact (is observed)⟩”: its template text is equivalent to the observation template text - we introduce this typical
expression because it helps making the reading of the explanation template texts more natural.

• “⟨meeting the foil⟩”: its template text specifies what it is for a solution to comply with the foil - recall that, in the
terminology of contrastive explanations, the foil refers to the alternative to the observed fact (see Chapter 3).

• “⟨neighbors⟩”: its template text delineates the set of neighboring solutions featuring the foil instead of the observed
fact.

Labels Generic names Specific template texts

(Ins,C)
“⟨the fact (is observed)⟩” “⟨task j∗⟩ is not performed by ⟨employee i∗⟩ just after ⟨activity k∗⟩”
“⟨meeting the foil⟩” “having ⟨employee i∗⟩ perform ⟨task j∗⟩ just after ⟨activity k∗⟩”

“⟨neighbors⟩” “solutions obtained by inserting ⟨task j∗⟩ just after ⟨activity k∗⟩
in ⟨employee i∗⟩’s planning”

(Ins,P,a)

“⟨the fact (is observed)⟩” “⟨task j∗⟩ is not performed by ⟨employee i∗⟩ between
any pair of consecutive activities of their planning”

“⟨meeting the foil⟩” “having ⟨employee i∗⟩ perform ⟨task j∗⟩ between
two consecutive activities of their planning”

“⟨neighbors⟩” “solutions obtained by inserting ⟨task j∗⟩ between
every pair of consecutive activities of ⟨employee i∗⟩’s planning”

...
...

...

(Ord,E)
“⟨the fact (is observed)⟩” “⟨employee i∗⟩ is not performing their activities in any other order”
“⟨meeting the foil⟩” “having ⟨employee i∗⟩ perform their activities in another order”
“⟨neighbors⟩” “solutions obtained by permuting the activities in ⟨employee i∗⟩’s planning”

Table 5.1: Template texts of typical expressions associated with each observation label (from the list presented in
Table 4.1) and each typical expression name.

44

The purpose of typical expressions is to be used as pieces of text involved in the explanation template texts that we
design in this chapter. Thanks to typical expressions, on one hand, we can design observation-independent explanation
template texts, by using the generic names of typical expression. On the other, given an observation, these explanation
template texts become observation-specific by replacing in it generic names with corresponding specific template texts
according to Table 5.1. For instance, suppose that we design an explanation template text containing the sentence
“Despite the changes in the instance, ⟨meeting the foil⟩ remains impossible.” As such, this explanation template text
is observation-independent. Suppose now that we use this explanation template text for answering a question about
an (Ins,C) observation, then this sentence becomes “Despite the changes in the instance, having ⟨task j∗⟩ performed by
⟨employee i∗⟩ just after ⟨activity k∗⟩ remains impossible.” Now, the explanation template text is observation-specific. Note
that the generic names of typical expressions contain the symbol “⟨.⟩”, which we use throughout this work for fields of
template texts, as they can be interpreted as fields which are replaced by specific contents.

To sum up, thanks to typical expressions, we do not need to prepare specific explanation template text for each
possible observation template. We can instead design explanation template texts in a observation-independent fashion
by using the generic names of typical expressions as elements of texts. Then, given an observation, these generic names
correspond to fields which can be replaced with associated specific template texts, making explanation template texts
become observation-specific. In the following sections, typical expressions will be used as part of our approach for building
explanation texts.

5.3 Generating contrastive explanation texts
This section focuses on the generation of contrastive explanations, i.e. explanations aiming at clarifying why one fact

occurred in contrast to another (see Section 2.3 and Subsection 4.2.2). Consider that end-users have a feasible solution S
of an instance I, as well as a contrastive question q = qc(o,S, I), based on one of the question templates of Table 4.2, with
o an observation about S. We recall that observations, such as o, are assumed to be related to solution transformations
and therefore solution neighborhoods, such as N (o,S) (see Subsections 4.2.1 and 4.3.1).

Structure of the generation of contrastive explanation texts. The algorithmic procedure for generating contrastive
explanation texts in response to contrastive questions consists in two phases.

• Phase 1. Preliminary checks are carried out. They check whether conditions, which are necessary for the neighbor-
hood N (o,S) to contain solutions that are feasible and better than S (with respect to I), are satisfied.

• Phase 2. If the preliminary checks are satisfied, then, complete checks are performed. They explore the neighborhood
N (o,S) in order to look for a solution that is feasible and better than S (with respect to I).

See Figure 5.1 for a graphical description of this procedure in which the two phases are framed by yellow dashed boxes.
Based on the results of these checks, contrastive explanation texts are built. The texts either correspond to proof-like

negative, argument-like negative or positive explanations (see Subsection 4.3.3). We recall that a positive explanation
basically confirms that end-users are right to wonder about observing o in S because there exists a neighboring solution
S ′ that is feasible and better than S w.r.t. I. On the opposite, a negative explanation basically confirms that S is a
good quality solution because none of the neighboring solutions of N (o,S) are feasible and better than S w.r.t. I and it
provides a justification to that affirmation. More specifically, a proof-like negative explanation provides an exhaustive and
complete justification (in other words a proof) while the argument-like negative explanation provides a convincing example
to illustrate (in other words an argument).

In the next subsection, we describe preliminary checks of Phase 1. In the two following ones, we deal with complete
checks which relate to exploring neighborhoods. Finally, we present numerical experiments.

5.3.1 Preliminary checks
Depending on the contrastive question q = qc(o,S, I), and especially the observation template of o, it may be possible

to identify some conditions involving o, S and I, which are necessary for N (o,S) to contain solutions that are feasible and
better than S. Checking these conditions as preliminary checks is relevant first if they can be computed in polynomial time,
without having to build neighboring solutions, and second if they can provide narratable proof-like negative explanations.
Let us illustrate such preliminary checks on an example and then provide some general comments.

Let us assume that end-users ask the contrastive question q “Why Fabian is not performing task 18 in addition to the
activities of his route?”, which is based on (Ins,E) template. For this question, we propose two preliminary checks: one
related to skill considerations and one related to time considerations. Note that the solutions in N (o,S) are such that
task 18 is assigned to Fabian.

45

In
pu

t:
co

nt
ra

st
iv

e
qu

es
tio

n
q

=
q c

(o
,S

,I
)

St
ar

t

Ch
ec

k
(in

po
ly

no
m

ia
lt

im
e)

ne
ce

ss
ar

y
co

nd
iti

on
s

fo
r

N
(o

,S
)

to
co

nt
ai

n
fe

as
ib

le
an

d
be

tt
er

so
lu

tio
ns

th
an

S
w

.r.
t.

I

Ar
e

al
ln

ec
es

sa
ry

co
nd

iti
on

s
sa

tis
fie

d?
no

ye
s

Fi
nd

in
N

(o
,S

)
th

e
su

pp
or

t
so

lu
tio

n
S

⋆
i.e

.
ei

th
er

th
e

ne
ar

es
t-

to
-b

e-
fe

as
ib

le
so

lu
tio

n
or

th
e

fe
as

ib
le

so
lu

tio
n

w
ith

th
e

be
st

ob
j.

va
lu

e
w

.r.
t.

I

Is
S

⋆
fe

as
ib

le
w

.r.
t.

I?
no

ye
s

Is
S

⋆
be

tt
er

th
an

S
w

.r.
t.

I?
no

ye
s

Ar
e

al
ls

ol
ut

io
ns

of
N

(o
,S

)
ro

ut
e-

eq
ua

l?

ye
s

no

Ar
e

al
ls

ol
ut

io
ns

of
N

(o
,S

)
ro

ut
e-

eq
ua

l?

ye
s

no

Bu
ild

a
pr

oo
f-l

ik
e

ne
ga

tiv
e

ex
pl

an
at

io
n

te
xt

u
x

(q
)

ba
se

d
on

in
fe

as
ib

le
su

bs
et

U
id

en
tifi

ed
th

an
ks

to
S

⋆

Bu
ild

an
ar

g.
-li

ke
ne

ga
tiv

e
ex

pl
an

at
io

n
te

xt
u

x
(q

)
ab

ou
t

in
fe

as
ib

ili
ty

us
in

g
S

⋆

Bu
ild

a
pr

oo
f-l

ik
e

ne
ga

tiv
e

ex
pl

an
at

io
n

ba
se

d
on

in
fe

as
ib

le
su

bs
et

U
id

en
tifi

ed
th

an
ks

to
S

⋆

Bu
ild

an
ar

g.
-li

ke
ne

ga
tiv

e
ex

pl
an

at
io

n
te

xt
u

x
(q

)
ab

ou
t

no
n-

im
pr

ov
em

en
t

us
in

g
S

⋆

Bu
ild

a
po

sit
iv

e
ex

pl
an

at
io

n
te

xt
u

x
(q

)
us

in
g

S
⋆

Bu
ild

a
pr

oo
f-l

ik
e

ne
ga

tiv
e

ex
pl

an
at

io
n

te
xt

u
x

(q
)

ab
ou

t
un

sa
tis

fie
d

ne
ce

ss
ar

y
co

nd
iti

on

P
ha

se
1

-
P

re
lim

in
ar

y
ch

ec
ks

(n
ec

es
sa

ry
co

nd
iti

on
s)

P
ha

se
2

-
C

om
pl

et
e

ch
ec

ks
(n

ei
gh

bo
rh

oo
d

ex
pl

or
at

io
n)

O
ut

pu
t:

ex
pl

an
at

io
n

te
xt

u
x

(q
)

En
d

Fi
gu

re
5.

1:
Al

go
rit

hm
ic

fra
m

ew
or

k
fo

rg
en

er
at

in
g

co
nt

ra
st

ive
ex

pl
an

at
io

n
te

xt
s.

46

• Regarding skills, a necessary condition for N (o,S) to contain feasible solutions is that Fabian is skilled enough
for performing task 18. Checking this condition can be performed in constant time, without having to build any
neighboring solutions. If this condition is not satisfied, then the subset of constraints { (M2.5), (M2.12)} of the foil
model fm(o,S, I) is infeasible (see Model 2 in Subsection 4.3.2 for the ILP definition of the foil model). It can be
used in a proof-like negative explanation which can be narrated as follows:
“In the current solution, Fabian is not performing task 18 in addition to the activities of his route because Fabian
has a skill level of 1 while the task 18 has a skill level of 2”.

• Regarding time, in order to find a feasible solution such that Fabian performs task 18 in addition to the tasks of
his planning, it is necessary that it exists a feasible solution such that Fabian performs at least task 18. In other
words, a necessary condition for N (o,S) to contain feasible solutions is that Fabian must have enough time to leave
his home location at the beginning of his working time window, travel to task 18, perform it within its availability
time window and come back to his home location before the end of his working time window. Again checking this
condition can be performed in constant time, without having to build any neighboring solutions. If this condition
is not satisfied, then the subset of constraints { (M2.2) to (M2.4), (M2.7) to (M2.11) and the constraint among
(M2.12) enforcing Fabian to perform task 18 } of the foil model fm(o,S, I) is infeasible. It can be used in a
proof-like negative explanation which can be narrated as follows: “In the current solution, Fabian is not performing
task 18 in addition to the activities of his planning. Even if Fabian task 18 was the only task in his planning, Fabian
could not perform task 18 while it is available. By performing task 18 after leaving home, Fabian would end it at
the earliest at 1:00PM. However, task 18 must be ended by 12PM. Thus, having Fabian perform task 18 in addition
to the activities of his planning is impossible.”.

More generally, these two preliminary checks can be applied to other observation templates than (Ins,E).

Preliminary checks. Whenever the transformation from S to any neighboring solution of N (o,S) requires one task
j∗ to be assigned to one employee i∗ (which includes transformations related to (Ins,C), (Ins,P,a) and (Ins,E) as well as
(Ex,C), (Ex,P,a) and (Ex,E) observation templates), we propose to check two groups of necessary conditions related to
skills and to time. If these conditions are not satisfied, proof-like negative explanation texts are built thanks to template
texts using typical expressions as well as data related to the checks computation.

• Necessary condition regarding skills. Employee i∗ must be skilled enough to perform task j∗ i.e. skei∗ ≥ sktj∗ .
If this condition is not satisfied, then an explanation text can be built with the following template text:
“In the current solution, ⟨the fact (is observed)⟩ because ⟨employee i∗⟩ has a skill level of ⟨skei∗⟩ while ⟨task j∗⟩
has a skill level of ⟨sktj∗⟩.”

• Necessary conditions regarding time. There are two conditions to be satisfied :
1. employee i∗ must have enough time to leave his home location at the beginning of his working time window,

travel to task j∗ and perform it before the end of its availability, i.e. lbei∗ + trdi∗ j∗ + dtj∗ ≤ ubtj∗ .
2. i∗ must have then enough time to leave j∗ and come back home before the end of their working hours, i.e.

max(lbei∗ + trdi∗ j∗ , lbtj∗) + dtj∗ + trj∗ri∗ ≤ ubei∗ .
If one of these conditions is not satisfied, then an explanation text can be built with a template text starting with:
“In the current solution, ⟨the fact (is observed)⟩ because ⟨employee i∗⟩ could not perform ⟨task j∗⟩, even as the
only task of their planning. Indeed, consider a solution such that ⟨employee i∗⟩ would perform only ⟨task j∗⟩.”
Then, depending on the unsatisfied condition, this template text is extended by:

1. “By performing ⟨task j∗⟩ at the earliest possible time after leaving home, ⟨employee i∗⟩ would end it at the
earliest at ⟨lbei∗ + trdi∗ j∗ + dtj∗⟩. However, ⟨task j∗⟩ must be ended by ⟨ubtj∗⟩.”

2. “By performing ⟨task j∗⟩ at the earliest possible time after leaving home, ⟨employee i∗⟩ would end it at the
earliest at ⟨lbei∗ + trdi∗ j∗ + dtj∗⟩. However, ⟨task j∗⟩ must be ended at the latest at ⟨ubei∗ − trj∗ri∗ ⟩ so that
⟨employee i∗⟩ has enough time to come back home before ⟨ubei∗⟩.”

Finally, it is ended with “Therefore, such a solution would be infeasible.”

In this subsection, we focused on Phase 1 i.e. preliminary checks. Such checks are performed because, in the case where
they are unsatisfied, they provide proof-like negative explanation texts in polynomial time. In the two following subsections,
we deal with Phase 2 i.e. complete checks. These checks relate to exploring neighborhoods. The first subsection define
the notion of support solutions and describes how we determine such solutions. The second one presents how we then
build explanation texts using information extracted from the support solutions.

47

5.3.2 Complete checks - identifying a support solution

We remind that, in this section, we considered that end-users have a contrastive question q = qc(o,S, I) with S feasible
solution of the instance I. From now on, we refer to S as the current solution to distinguish it from other solutions such
as neighboring solutions.

As shown in Figure 5.1, the first step of Phase 2 consists in identifying a support solution. This is a particular
neighboring solution whose properties (including whether it is feasible and whether it is better than the current solution
S) will be exploited for building relevant explanations texts. Since the definition of the support solution uses a notion
of nearest-to-feasibility, we first need to define this notion. In the following paragraphs, we first give the definition of
nearest-to-feasibility, then the one of the support solution, and we finally describe how to compute support solutions.

In Subsections 4.2.1 and 4.2.2, we assumed that contrastive questions are based on observations and observations
are related to transformations which define neighborhoods. Therefore, the contrastive question q, which is based on the
observation o, is related to a transformation tf and a neighborhood N (o,S)1. Suppose now that tf is applied on S to
obtain a neighboring solution S ′ of N (o,S). In Section 3.3 (summarized in Table 3.1), we noticed that, regardless of
the transformation, the process of building a neighboring solution from a given solution consistently requires to apply a
single insertion (either an elementary insertion transformation or an insertion with permutation). However, as we saw it in
Section 3.3, insertions are not always feasible. In order to know whether an insertion is feasible and if not by how much, we
introduced the feasibility gap: if the insertion is feasible, the feasibility gap is null; if the insertion is infeasible, it is positive
and measures the difference between the earliest start time at which the inserted task can be started, without violating
any time constraints (availability, working hours and sequencing constraints) in the sequence of activities located before
the insertion, and the latest start time at which the inserted task can be started, without violating any time constraints
in the sequence of activities located after the insertion. Since every transformation process requires to apply a single
insertion, we can associate this transformation with a feasibility gap measuring the (in)feasibility of this transformation.
In particular, we can associate the transformation from S to S ′ with a feasibility gap. Now consider all the neighboring
solutions in N (o,S). Each one can be associated with a feasibility gap. We call nearest-to-feasibility neighboring solutions
the solutions with minimum feasibility gap.

Nearest-to-feasibility solution. Consider a feasible solution S of an instance I as well as an observation o about
S. For any neighboring solution S ′ in N (o,S), building S ′ from S requires to apply an insertion (either an elementary
insertion transformation or an insertion with permutation) whose feasibility can be measured thanks to the feasibility gap.
Then, we say that a neighboring solution in N (o,S) is a nearest-to-feasibility solution (relatively to I) if it minimizes the
feasibility gap.

There are two remarks to be made about this definition. Firstly, there may be several solutions minimizing the feasibility
gap, that is why we write in the definition a nearest-to-feasibility solution rather than the nearest-to-feasibility solution.
But in this document, we sometimes abuse language and write the nearest-to-feasibility solution. Secondly, note that if
N (o,S) does not contain any feasible solutions, then the feasibility gap of each of its solutions, especially the one of a
nearest-to-feasibility solution, is positive. In other words, the nearest-to-feasibility solution tells us about the feasibility of
N (o,S) and its feasibility gap can be seen as a way of quantifying its potential infeasibility.

Now that we have introduced the notion of nearest-to-feasibility solution, we can proceed to the definition of the
support solution. This second notion is based on the following assumption. If end-users make an observation o about the
current solution S and want to transform S in consequence, then they would like to find a neighboring solution S⋆ that
is the best feasible one. However, if there is no feasible neighboring solution, then we would be interested in knowing the
solution that is the nearest to be feasible.

Support solution. Given a feasible solution S of an instance I as well as an observation o about S, we define a
support solution, noted S⋆, as a solution in N (o,S), such that:

- if N (o,S) does not contain any feasible solutions (with respect to I), then S⋆ is a nearest-to-feasibility solution in
N (o,S) (relatively to I);

- else, S⋆ is the best feasible solution in N (o,S).
Intuitively, the support solution is the “best” or the “most convincing” neighboring solution to present to end-users.

1We recall that we made an abuse of the neighborhood notation. Given an observation o about a solution S and given tf the transformation
related to o, while the neighborhood notation was first introduced in Section 3.3 as N (tf, S,) the neighborhood of S induced by the transformation
tf , we decided to write in Subsection 4.3.1 N (o, S) the neighborhood related to the observation o (induced by its related transformation tf).
In other words, N (tf, S) ≡ N (o, S).

48

As the notion of support solution is now defined, we can move on to computing such a support solution. We recall that,
in Section 3.3, we introduced the notion of route-equality. Two solutions of a same instance are said route-equal if they have
the same employee routes. Then, leveraging this notion of route-equality, we defined three categories of transformations
based on the structure of their corresponding neighborhoods. A neighborhood is said to have a constant-size structure
(resp. polynomial-size or exponential-size ones), if the number of groups of route-equal neighboring solutions is constant
(resp. polynomial or exponential) in n, number of employees in E , and m, number of tasks in T . A transformation is said
constant-size (resp. polynomial-size or exponential-size) if its neighborhood has a constant-size (resp. polynomial-size or
exponential-size) structure.

In order to identify a support solution, the neighborhood N (o,S) must be explored. Therefore, the structure of the
neighborhood N (o,S) has a direct impact on the nature of the algorithm used to find a support solution. When N (o,S)
has a constant or polynomial structure, polynomial-time algorithms may be used. They explore N (o,S) by examining each
of its subsets of route-equal solutions - given that there is a polynomial number of such subsets. However, when N (o,S)
has an exponential structure, examining an exponential number of subsets of route-equal solutions of N (o,S) would be
computationally intractable. Therefore, we resort to ILP-based algorithms which implicitly explore N (o,S) by solving an
ILP model. We discuss in what follows both kinds of algorithms.

Before, we recall the notions of Backward Earliest start Time (BET) and Forward Latest start Time (FLT) introduced
in Subsection 3.3.1. Suppose that one wants to insert task j in the planning of employee i between activity k1 and
activity k2, then the BET (resp. FLT), noted stb

j (resp. stf
j), is the earliest time (resp. latest time) at which i can start

performing j such that the activities before k1 (resp. after k2) can be associated with start times which satisfy time
constraints. The, the feasibility gap that we mentioned earlier in this section corresponds to the quantity max(stb

j−stf
j , 0)

and indicates whether inserting j between k1 and k2 in the planning of i is feasible, and if not it measures by how much.
We present now the polynomial-time algorithms used for computing support solutions in relation with constant-size or

polynomial-size transformations.

Polynomial-time algorithms for computing support solutions. Given a contrastive question q = qc(o,S, I) such
that the neighborhood N (o,S) has a constant-size or polynomial-size structure, we have a polynomial-time algorithm for
computing a support solution S⋆ used for answering q. In other words, we have a polynomial-size algorithm to compute
a support solution for o based on any of the following templates: (Ins,C), (Ins,P,a), (Ins,P,b), (Ins,P,c), (Ex,C), (Ex,P,a),
(Ex,P,b), (Ex,P,c), (Ord,C,a), (Ord,C,b), (Ord,P,a), (Ord,P,b) and (Ord,P,c).

The combination of Algorithm 5.1 and Table 5.2 allows to obtain a polynomial-time algorithm for each of the above-
mentioned observation templates.

• Algorithm 5.1 is a generic algorithm that shows the common structure of any polynomial algorithm but it also relies
on specific parameters and instructions which depend on the observation template of o. The parameters are E⋆ a
subset of E , T ⋆ a subset of T and K(i, j) an application returning a subset of position indices of the activities of
Ri, route of a given employee i (and that may also depends of a given activity j).
Algorithm 5.1 essentially consists of applying on the given solution S an elementary insertion transformation (at line
9) for various choices of task to insert (in T ⋆), employee planning to affect (in E⋆) and position of the task to insert
withing this employee planning (in K(i, j)). Before and after this elementary insertion, specific instructions A and B
(involved at lines 5 and 8) are either elementary removing transformation or none instruction. Along with with the
elementary insertion, they allow to compute insertion, exchange or reordering transformation.

• Table 5.2 specifies, for each of the above-mentioned observation templates, the choice of parameters and specific
instructions. In the specification of K(i, j), a function noted index(k,Ri) is involved: given an employee i and an
activity k, index(k,Ri) returns the position index of k in the route Ri of i. Besides, |Ri| corresponds the number
of activities in Ri.

Thus, by combining the generic structure of Algorithm 5.1 with the specific contents of Table 5.2 related to the template
of o, we obtain a specific polynomial algorithm for computing the support solution used for answering q.

Finally, all the algorithms based on Algorithm 5.1, along with parameters and instructions from Table 5.2, are poly-
nomial. Indeed, the loops at lines 2, 3 and 6 are repeated respectively O(n), O(m) and O(m) times. And all of the
instructions within these loops, including especially the specific instructions at lines 5 and 8 as well as the insertion at line
Algorithm 5.1, are computed in constant O(1) or linear O(m) times (see Section 3.3).

We can move on to the ILP-based algorithms used for computing support solutions in relation with exponential-size
transformations.

49

Obs.
labels

Subset of
empl. E⋆

Subset of
tasks T ⋆

Subset of indices K(i, j)
(i ∈ E⋆, j ∈ T ⋆)

Specific instr. A
(i ∈ E⋆, j ∈ T ⋆)

Specific instruction B
(i ∈ E⋆, j ∈ T ⋆, k ∈ K(i, j))

(Ins,C) {i∗} {j∗} {index(k∗,Ri)} - -
(Ins,P,a) {i∗} {j∗} {1, . . . , |Ri| − 1} - -

(Ins,P,b) {i∗} {j ∈ T | j not
performed in S} {1, . . . , |Ri| − 1} - -

(Ins,P,c) E {j∗} {1, . . . , |Ri| − 1} - -

(Ex,C) {i∗} {j∗} {index(k∗,Ri)− 1} - Remove task at index
k + 1 from i’s planning

(Ex,P,a) {i∗} {j∗} {1, . . . , |Ri| − 2} - Remove task at index
k + 1 from i’s planning

(Ex,P,b) {i∗} {j ∈ T | j not
performed in S} {1, . . . , |Ri| − 2} - Remove task at index

k + 1 from i’s planning

(Ex,P,c) E {j∗} {1, . . . , |Ri| − 2} - Remove task at index
k + 1 from i’s planning

(Ord,C,a) {i∗} {j∗} {index(k∗,Ri)− 1} Remove j from
i’s planning -

(Ord,C,b) {i∗} {j∗} {index(k∗,Ri)− 1} Remove j from
i’s planning -

(Ord,P,a) {i∗} {j∗} {index(k∗,Ri)− 1, . . . ,
|Ri| − 2}

Remove j from
i’s planning -

(Ord,P,b) {i∗} {j∗} {1, . . . , index(k∗,Ri)− 1} Remove j from
i’s planning -

(Ord,P,c) {i∗} {j∗} {1, . . . , index(j,Ri)− 2,
index(j,Ri), . . . , |Ri| − 2}

Remove j from
i’s planning -

Table 5.2: Parameters and instructions involved in Algorithm 5.1 for various possible observation templates. In the
table header, “obs.”, “empl.” and “instr.” stand respectively for “observation”, “employees” and “instruction”. In the table
content, S is the feasible solution of the instance I both given as inputs in Algorithm 5.1. The symbol “-” for first and
second specific instructions means that there is no specific instruction to apply.

50

Algorithm 5.1: Polynomial-time algorithm for computing a support solution2

Inputs:
I an instance
S a feasible solution of I
o an observation about S (such that N (o,S) has a constant or polynomial structure)
Parameters (which depend on the observation template of o, cf. Table 5.2):
E⋆ a subset of the set of employees E
T ⋆ a subset of the set of tasks T
K(i, j) ⊂ N a subset of planning indices, function of i ∈ E⋆ and j ∈ T ⋆

1 S⋆ ← ∅
2 for i ∈ E⋆ do
3 for j ∈ T ⋆ do
4 S ′ ← S
5 Apply to S ′ specific instruction A (which depends on the template of o, cf. Table 5.2)
6 for k ∈ K(i, j) do
7 S ′′ ← S ′

8 Apply to S ′′ specific instruction B (which depends on the template of o, cf. Table 5.2)
9 Insert task j in the planning of employee i after its kth activity, in S ′′, so as to minimize the feasibility

gap of this insertion max(stb
j − stf

j , 0)
10 if S⋆ = ∅ or

(both S ′′ and S⋆ are infeasible) and (S ′′ has a smaller infeasibility gap than S⋆) or
S ′′ feasible and not S⋆ or
(both S ′′ and S⋆ are feasible) and (S ′′ is better than S⋆) then

11 S⋆ ← S ′′

12 Along with S⋆, save information related to the task insertion that has been applied at line 9:
task j is inserted in the planning of employee i after its kth activity, with BET stb

j and FLT stf
j

Output:
S⋆ a support solution (as well as the information mentioned at line 12)

The polynomial-time algorithm presented here meets its goal, namely computing a support solution for any constant-size or polynomial-size
transformation. However, there exists a more efficient algorithm meeting the same goal that we do not present for simplicity but that we can
outline. The efficiency improvement of this other algorithm compared to the one presented here relies on two remarks: i) copying solutions as
it is done at lines 7 or 11 is costly (linear cost) ii) we do not need to practically remove, insert or exchange a task from an employee planning in
order to know the feasibility of a single removing, insertion or exchanging transformation and the impact on the bi-objective function values, we
can anticipate these (by using the BTS and FTS see Subsection 5.3.1, and by simply anticipating the variations of objectives). Thus, instead
of copying S′ into S′′ and S′′ into S⋆ at line, we can anticipate the feasibility and the variation of the bi-objective function values of the
solution resulting from the instructions at lines 8 and 9 without computing it. We can also compare this “non-built” solution (feasibility and
bi-objective function values) with previous similar solutions, including the best “non-built” support solution found so far. If it is better, the
solution becomes the best “non-built” support solution found so far, and we save it, not the solution itself (which would require a solution copy)
but the operations to apply to S in order to build it. So that, finally, after examining the neighborhood, the support solution S⋆ is actually built,
once, by applying the saved best operations to apply to S. Given a constant-size or polynomial-size transformation, this efficient algorithm has
a computational complexity corresponding to the maximum between the one of the transformation feasibility check and the one for building a
neighboring solution.

51

ILP-based algorithms developed for computing support solution use various ILP models which depend on the template
of the observation involved in the contrastive question. All these models are based on a generic ILP model that we call
contrastive transformation model and introduce below. We recall that we introduced the main model mm(I) (see Model
1 in Subsection 3.2.2) for modeling our WSRP use case and the foil model fm(o,S, I) (see Model 2 in Subsection 4.3.2)
for modeling the theoretical exploration in the neighborhood N (o,S) of a solution that would be feasible and better than
S.

Contrastive transformation model. Given a contrastive question q = qc(o,S, I) such thatN (o,S) has an exponential-
size structure, i.e. o is based on one of the observation templates (Ins,E), (Ex,E) or (Ord,E), we call contrastive trans-
formation model, noted ctm(o,S, I), the bi-objective ILP model used for finding a support solution S⋆ with the aim to
answer q. Note that each of (Ins,E), (Ex,E) and (Ord,E) templates specifies an employee of interest i∗ within their text.
In addition, each of (Ins,E) and (Ex,E) also specifies a task of interest j∗, which corresponds to the task that must be
inserted in the planning of i∗. In the case of (Ord,E), we decide to note j∗ the task positioned in the middle of the planning
of employee i∗.

ctm(o,S, I) is obtained by combining Model 3 with observation-dependent parameters and constraints from Table 5.3.

• Model 3 is a generic bi-objective ILP model which aims at finding the support planning (R⋆
i∗ , C⋆

i∗) which must replace
(Ri∗ , Ci∗) in the solution S in order to obtain the support solution S⋆. Model 3 is generic because it uses a set T ⋆

and constraint (M3.13), whose explicit mathematical contents depend on the observation template of o and need to
be specified to get a fully defined model.

• The purpose of Table 5.3 is actually to specify, for each of the above-mentioned observation templates, the subset
T ⋆ and the constraints (M3.13). T ⋆ is a subset of the set of tasks T . It contains only the tasks that are involved
in the planning of employee i∗ as well as possible other tasks that are relevant for the transformation to apply to S
(e.g. the task to insert in the planning of i∗). (M3.13) corresponds to neighboring constraints which ensure that, if
the planning of employee i in S is changed for the planning obtained by solving Model 3, then the obtained solution
is a neighboring solution of N (o,S). Neighboring constraints are noted φ(X) ∈ N (o,S) in Model 3 in reference to
the neighboring constraints in the foil model fm(q) which play a similar role.

ctm(o,S, I) is based on main model mm(I) and foil model fm(o,S, I). However, ctm(o,S, I) differs from mm(I)
on various aspects which we detail below.

• General differences. An overall difference between the two models is that ctm(o,S, I) focuses on optimizing only
one employee planning, namely the planning of i∗, whereas mm(I) deals with a solution i.e. the plannings of all the
employees of E .
The main consequence of this focus on the planning of i∗ is that not all the decision variables of mm(I) are involved
in ctm(o,S, I): only the path decision variables Uijk with i = i∗ and the start time ones Tj with j ∈ T ⋆ are indeed
necessary for ctm(o,S, I). In other words, optimizing ctm(o,S, I) can be seen as fixing in mm(I) all the variables
Uijk with i ̸= i∗ as well as all the variables Tj with j ∈ T \ T ⋆ to the values they take in S and focusing the
optimization over the set of the remaining variables - plus other decision variables which will be described below.
Other consequences of this focus on the planning of i∗ are that: there are no sums over E or constraints repeated
over E in ctm(o,S, I); sums indexed over T in mm(I) are indexed over T ⋆ in ctm(o,S, I); constraints repeated
over T in mm(I) are repeated over T ⋆ in ctm(o,S, I); etc.
Finally, this restriction leads to a drastic decrease in the size of ctm(o,S, I) compared with mm(I), which helps to
solve ctm(o,S, I) faster.

• Decision variables. In addition to the path decision variables, Ui∗jk with (j, k) ∈ A2
i∗ such that j ̸= k, and the

start time ones, Tj for j ∈ T ⋆, inherited from mm(I), two new integer variables T lb
j∗ and T ub

j∗ are brought into play
in ctm(o,S, I). Like Tj∗ , they are related to the time at which the task j∗ starts to be performed (by i∗): T lb

j∗ (resp.
T ub

j∗) corresponds to the time at which i∗ can start to perform j∗ while having all the time constraints related to the
activities performed by i∗ before (resp. after) j∗ satisfied and while respecting the lower (resp. upper) bound of the
availability window of j∗. We call T lb

j∗ and T ub
j∗ , BET and FLT decision variables, as they are the decision-variable

equivalents of the BET stb
j and FLT stf

j .
Thanks to the way we involve T lb

j∗ and T ub
j∗ in ctm(o,S, I), these two variables allow us to guarantee the feasibility

of this model: either T lb
j∗ > T ub

j∗ and it means that inserting j∗ in the planning of i∗ is infeasible, even if we permute
the order of the tasks; or T lb

j∗ = T ub
j∗ and it means that the insertion is feasible, since all the time constraints of the

activities performed by i∗ before and after j∗ are satisfied.

52

• Multi-objective function. Similarly to mm(I), in ctm(o,S, I), a bi-objective function (M3.1) is minimized ac-
cording to a lexicographic order. However, the objective are not the same.

1. The first objective aims at tightening the gap between the two variables T lb
j∗ and T ub

j∗ by minimizing the
difference T lb

j∗ −T ub
j∗ , as having T lb

j∗ = T ub
j∗ means that the insertion of j∗ in the planning of i∗ is feasible. Note

that the constraint (M3.12.a) prevents the difference T lb
j∗ − T ub

j∗ from being negative.
2. The second objective is related to the second objective of mm(I) as it minimizes the total traveling time of

the planning of i∗.

• Constraints. Most constraints of the mm(I) still apply in the ctm(o,S, I) but must be adapted.
- Flow constraints (M1.2) to (M1.4) correspond to constraints (M3.2) to (M3.4); however (M3.2) to (M3.4)

zoom on employee i∗ and subset T ⋆ while (M1.2) to (M1.4) involve the whole sets E and T .
- No equivalent of the skill constraint (M1.5) appears in the ctm(o,S, I) as i∗ is supposed to have a higher skill

level than the ones of all the tasks of T ⋆ (especially j∗).
- Occurrence constraint (M1.6) coincides with constraint (M3.6) but (M3.6) zoom on employee i∗ and subset
T ⋆.

- Availability, working hours and sequencing constraints spanning labels from (M1.7) to (M1.11) in mm(I)
are also involved, with some changes, in ctm(o,S, I) as labels spanning from (M3.7.a) to (M3.11.b). Each
original constraint of mm(I) (e.g. constraint (M1.7)) is split into two or three constraints in ctm(o,S, I) (e.g.
constraints (M3.7.a) and (M3.7.b)) in order to separate the case of j∗, which involves T lb

j∗ and T ub
j∗ , from the

one of any other task j in T ⋆, which involves Tj .
In addition, three new constraints are introduced in ctm(o,S, I).

- As mentioned earlier, constraint (M3.12.a) prevents the difference T lb
j∗ − T ub

j∗ from being negative.
- Constraint (M3.12.b) is simply used for controlling Tj∗ value which is no longer involved in any constraint.
- Constraint (M3.13) corresponds to the neighboring constraints introduced above and detailed in Table 5.3.

ILP-based algorithms for computing support solutions. Given a contrastive question q = qc(o,S, I) such that
N (o,S) has an exponential-size structure, i.e. o is based on one of the observation templates (Ins,E), (Ex,E) or (Ord,E), we
propose an ILP-based algorithm for computing a support solution pair S⋆ used for answering the question q. Regardless of
the observation template of o, this algorithm is described in Algorithm 5.2. It consists in solving (at line 2) the contrastive
transformation model ctm(o,S, I) which we described above. The results of this solving are then used to build the support
solution (at lines 4 and 5).

In this subsection, we described the first step of Phase 2: given a contrastive question q = qc(o,S, I), computing
a support solution S⋆ - by resorting to either polynomial-time or ILP-based algorithms depending on the structure of
N (o,S). In the following subsection, we detail the remaining steps of Phase 2: using S⋆ in order to build an explanation
text ux(q) answering q.

53

lex min
(

T lb
j∗ − T ub

j∗ ,
∑

j∈Ai∗ , j ̸=ri∗

∑
k∈Ai∗ , k ̸=di∗ ,j

Ui∗jk trjk

)
(M3.1)

s.t. ∑
k∈Ai∗ , k ̸=di∗

Ui∗di∗ k = 1 (M3.2)∑
j∈Ai∗ , j ̸=ri∗

Ui∗jri∗ = 1 (M3.3)∑
j∈Ai∗ , j ̸=k,ri∗

Ui∗jk =
∑

j′∈Ai∗ , j′ ̸=di∗ ,k

Ui∗kj′ ∀ k ∈ T ⋆ (M3.4)∑
k∈Ai∗ , k ̸=di∗ ,j

Ui∗jk ≤ 1 ∀ j ∈ T ⋆ (M3.6)

lbtj ≤ Tj ∀ j ∈ T ⋆ \ {j∗} (M3.7.a)
lbtj∗ ≤ T lb

j∗ (M3.7.b)

Tj ≤ ubtj − dtj ∀ j ∈ T ⋆ \ {j∗} (M3.8.a)
T ub

j∗ ≤ ubtj∗ − dtj∗ (M3.8.b)

lbei∗ + trdi∗ k ≤ Tk ∀ k ∈ T ⋆ \ {j∗} (M3.9.a)
lbei∗ + trdi∗ j∗ ≤ T lb

j∗ (M3.9.b)

Tj + dtj + Ui∗jk trjk ≤ Tk +
(

1− Ui∗jk

)
ubtj ∀ j ̸= k ∈ T ⋆ \ {j∗} (M3.10.a)

T ub
j∗ + dtj∗ + Ui∗j∗k trj∗k ≤ Tk +

(
1− Ui∗j∗k

)
ubtj∗ ∀ k ∈ T ⋆ \ {j∗} (M3.10.b)

Tj + dtj + Ui∗jj∗ trjj∗ ≤ T lb
j∗ +

(
1− Ui∗jj∗

)
ubtj ∀ j ∈ T ⋆ \ {j∗} (M3.10.c)

Tj + dtj ≤ Ui∗jri∗ (ubei∗ − trjri∗) +
(

1− Ui∗jri∗

)
ubtj ∀ j ∈ T ⋆ \ {j∗} (M3.11.a)

T ub
j∗ + dtj∗ ≤ Ui∗j∗ri∗ (ubei∗ − trj∗ri∗) +

(
1− Ui∗j∗ri∗

)
ubtj∗ (M3.11.b)

T lb
j∗ − T ub

j∗ ≥ 0 (M3.12.a)
T ub

j∗ ≤ Tj∗ ≤ T lb
j∗ (M3.12.b)

φ(X) ∈ N (o,S) (M3.13)

Ui∗jk ∈ {0, 1} ∀ j ∈ Ai∗ \ {ri∗}, ∀ k ∈ Ai∗ \ {di∗ , j}

Tj ∈ N ∀ j ∈ T ⋆

T lb
j∗ , T ub

j∗ ∈ N

Model 3: Contrastive transformation model ctm(o,S, I), i.e. bi-objective ILP model used to identify the support planning
(R⋆

i∗ , C⋆
i∗) of employee i∗ (mentioned in o) so as to build a support solution S⋆ for answering the contrastive question

qc(o,S, I).

54

Labels Subset of tasks T ⋆ Neighborhood constraints

(Ins,E) (T ∩ Ri∗) ∪ {j∗}



∑
j,k∈Ri

consecutive

Ui∗jk < |Ri∗ | − 2

∑
k∈Ai∗ \{j}

Ui∗jk = 1 ∀ j ∈ T ⋆

(Ex,E) (T ∩ Ri∗) ∪ {j∗}



∑
j,k∈Ri

consecutive

Ui∗jk < |Ri∗ | − 3

∑
j∈T ⋆\{j∗}

∑
k∈Ai∗ \{j}

Ui∗jk = |Ri∗ | − 3

∑
k∈Ai∗ \{j∗}

Ui∗j∗k = 1

(Ord,E) T ∩ Ri∗



∑
j,k∈Ri

consecutive

Ui∗jk < |Ri∗ | − 4

∑
k∈Ai∗ \{j}

Ui∗jk = 1 ∀ j ∈ T ⋆

Table 5.3: Parameters and constraints involved in Model 3 for various possible observation templates. In the table
content, S is the feasible solution of the instance I both given as inputs in Algorithm 5.2.

Algorithm 5.2: ILP-based algorithm for computing a support solution

Inputs:
I an instance
S a feasible solution of I
o an observation about S (such that N (o,S) has an exponential structure)

1 S⋆ ← S
2 Solve the contrastive transformation model ctm(o,S, I) (cf. Model 3)
3 Obtain the values of T lb

j∗ and T ub
j∗ and store them respectively as BET stb

j and FLT stf
j

4 Build the support planning (R⋆
i∗ , C⋆

i∗) of employee i∗ given the values of spatial and temporal decision variables
resulting from solving ctm(o,S, I) and save related information:
task j∗ is inserted in the planning of employee i∗ after its kth activity, with BET stb

j and FLT stf
j

5 Create support solution S⋆ by copying S and replacing the planning of i∗ with the support planning (R⋆
i∗ , C⋆

i∗)

Output:
S⋆ a support solution (as well as information mentioned at line 4)

55

5.3.3 Complete checks - building an explanation text using the support solution

As shown in Figure 5.1, once the support solution S⋆ has been identified for answering the contrastive question
q = qc(o,S, I), there are three different cases.

1. Either S⋆ is infeasible, and we must build a negative explanation text ux(q) about the infeasibility of the neighboring
solutions of N (o,S).

2. Either S⋆ is feasible but not better than S, and we must build a negative explanation text ux(q) about the non-
improvement of N (o,S).

3. Or S⋆ is feasible and better than S, and we must build a positive explanation text ux(q).
In the following paragraphs, we first describe general information related to the support solution that we use in explanation
texts and then present how we write explanation texts in each of the three cases.

Information related to support solution. Both Algorithms 5.1 and 5.2 build a support solution S⋆ by considering an
elementary insertion transformation. The output data of these algorithms not only contain the support solution but also
details about this insertion. They describe which specific task j∗ is inserted in the planning of which specific employee i∗

and after which specific activity k in order to build S⋆ from S. Finally, the output data also provide BET stb
j and FLT stf

j

related to this insertion.
Thanks to these details, we can deduce which of the three above-presented cases S⋆ is in. If the feasibility gap

max(stb
j − stf

j , 0) is positive, then S⋆ is infeasible, which corresponds to case 1. If it is null, then S⋆ is feasible, and we
can compare the objectives of S and S⋆ in order to deduce whether S⋆ is in case 2 or 3. Note that, as skill constraints
are checked as part of preliminary checks (see Subsection 5.3.1), if S⋆ is infeasible, it is necessarily related to time
constraints (including availability, working hours and sequencing constraints). That is why we need to check just time-
related considerations and not skill-related ones.

Identifying in which above-presented case is S⋆ is not the only information that we can obtain from the results of
Algorithms 5.1 and 5.2 and that we can use to build explanation texts.

• We can prepare a typical expression “⟨applying the specific transformation to get the support solution⟩” describing
what specific transformation must be applied to S in order to obtain S⋆ (specifying what are the specific employees,
tasks or activities concerned by the transformation).

• In the case where the elementary insertion is infeasible, we can deduce whether it is specifically due to a conflict
between the sequence of activities before the insertion of task j∗ by checking if stb

j + dtj∗ > ubtj∗ .
• BET stb

j (resp. FLT stf
j) can be used within the explanation text as earliest (resp. latest) time at which task j∗

should be started so that the sequence of activities before (resp. after) j∗ can be performed while respecting time
constraints.

• In the case where the elementary insertion is infeasible, we can also deduce what are the backward and forward
critical activities (see Section 3.3) related to this insertion and use them in the explanation text.

Now that we described all the information we can obtain from the computation of S⋆ and use within the explanation
texts, we can present how we build explanation texts for each of the three above-mentioned cases.

Case of infeasible support solution. Consider the case where S⋆ is not feasible. We must then provide a negative
explanation text describing the infeasibility of the solutions of N (o,S). As shown in Figure 5.1, there are two different
sub-cases: either all the solutions in N (o,S) are route-equal, then we write a text corresponding to a proof-like negative
explanation; or, solutions in N (o,S) are not route-equal, then we write a text corresponding to a argument-like negative
explanation. However, in both cases, we use S⋆ and its related information to write these texts.

Figure 5.2 details how we build (proof-like and argument-like) negative explanation texts about time-infeasibility. We
concatenate four parts of template texts whose fields are filled with typical expressions from Table 5.1 or data related to
the computation of S⋆.

1. The first part of text expresses in quite general terms why the explanation is negative: “due to time constraints”.
2. The second part of text refers to a transformation of the current solution and introduces a “new solution” which

corresponds to S⋆. This text depends on the structure of N (o,S), more specifically it depends on whether N (o,S)
is constant-size or not. In this second case, the use of “for example” brings out the fact that the text corresponds
to an argument-like negative explanation.

3. The third part of text depends on whether the task insertion applied to build S⋆ is backward infeasible or forward
infeasible. In both cases, the text refers to information related to S⋆ (including backward or forward critical activity,
earliest start or end time) as well as information related to o and I.

4. The fourth and last part of text is a conclusion.

56

Start

Inputs: contrastive question q = qc(o, S, I) and
information related to support solution S⋆

“In the current solution, ⟨the fact (is observed)⟩
because of time constraints.”

ux(q) =

First part -
affirmation

“Consider the new solution obtained from
the current one by ⟨applying the specific
transformation to get the support solution⟩.
This new solution is not feasible.”

ux(q) +=

“None of the ⟨neighbors⟩ are feasible. For
example, consider the new solution obtained
from the current one by ⟨applying the specific
transformation to get the support solution⟩.
This new solution is not feasible.”

ux(q) +=

solutions of N (o, S) are route-equal solutions of N (o, S) are not route-equalSecond part -
neighborhood structure

“By performing all the tasks from ⟨backward critical
activity⟩ to ⟨task j∗⟩ at the earliest possible time,
⟨employee i∗⟩ can end ⟨task j∗⟩ at the earliest at ⟨stb

j∗ +
dtj∗⟩. However, ⟨task j∗⟩ must be ended by ⟨lbtj∗⟩.”

ux(q) +=

“By performing all the tasks from ⟨backward critical activity⟩
to ⟨task j∗⟩ at the earliest possible time, ⟨employee i∗⟩ can
end ⟨task j∗⟩ at the earliest at ⟨stb

j∗ + dtj∗⟩.
However, ⟨task j∗⟩ must be ended at the latest at ⟨stf

j∗ + dtj∗⟩
so that ⟨employee i∗⟩ can perform all the activities
from ⟨task j∗⟩ to ⟨forward critical activity⟩.”

ux(q) +=

stb
j + dtj∗ > ubtj∗ stb

j + dtj∗ ≤ ubtj∗
Third part -
time-infeasibility

“Thus ⟨meeting the foil⟩ is impossible.”ux(q) +=
Fourth part -
conclusion

Output: contrastive explanation text ux(q)

End

Figure 5.2: Building contrastive negative explanation text about time-infeasibility given a support solution.

57

Start

Inputs: contrastive question q = qc(o, S, I) and
information related to support solution S⋆

“In the current solution, ⟨the fact (is observed)⟩ because
⟨meeting the foil⟩ does not improve the solution.”ux(q) =

First part -
affirmation

“Consider the new solution obtained from
the current one by ⟨applying the specific
transformation to get the support solution⟩.
This solution is feasible but not better than
the current one.”

ux(q) +=

“Among all the feasible ⟨neighbors⟩, the best
feasible solution is obtained from the current
solution by ⟨applying the specific transformation
to get the support solution⟩. However, this new
solution is not better than the current one.”

ux(q) +=

solutions of N (o, S) are route-equal solutions of N (o, S) are not route-equalSecond part -
neighborhood structure

“Indeed, the total working time of the new solution
⟨twt(S⋆)⟩ min is shorter than the one of the current
solution ⟨twt(S)⟩ min.”

ux(q) +=

“Indeed, the total working time of the new solution
⟨twt(S⋆)⟩ min is equal to the one of the current
solution, but its total traveling time ⟨trt(S⋆)⟩ min
is greater than the one of the current solution
⟨trt(S)⟩ min.”

ux(q) +=

twt(S⋆) < twt(S) twt(S⋆) = twt(S), trt(S⋆) ≥ trt(S)Third part -
comparison of solution quality

“Thus, ⟨meeting the foil⟩ is not interesting.”ux(q) +=
Fourth part -
conclusion

Output: contrastive explanation text ux(q)

End

Figure 5.3: Building a contrastive negative explanation text about non-improvement given a support solution.

58

Case of feasible but non-improving support solution. Consider the case where S⋆ is feasible but not better than
the current solution S. We must then provide a negative explanation text describing why the feasible solutions of N (o,S)
are not better than S. Again, the negative explanation is either proof-like or argument-like, depending on the structure of
N (o,S), but in both cases, we use the knowledge of S⋆ to write these texts.

Figure 5.3 details how we build (proof-like and argument-like) negative explanation texts about non-improvement.
Similarly to the case of time-infeasibility, we concatenate four parts of template texts using typical expressions and data
related to the computation of S⋆.

Case of feasible and improving support solution. Consider the case where S⋆ is feasible and better than S. We
must then build a positive explanation text, which consists essentially in presenting S⋆. It can be expressed as follows:
“Because the current solution is actually not optimal, ⟨the fact (is observed)⟩. However, indeed, ⟨meeting the foil⟩ is
possible and provides better solutions such as the solution obtained by ⟨applying the specific transformation to get the
support solution⟩.”

In the three last subsections, we presented how we generate contrastive explanation texts. In the next and last
subsection, we study the performances of this generation in terms of computation time.

5.3.4 Numerical experiments
In the perspective of integrating the generation of explanation texts within a system where end-users ask questions and

obtain explanation texts in return, we would like that the algorithms we designed for generating contrastive explanation
texts run within a time-frame compatible with near-real-time use of explanations by end-users. This subsection presents
the numerical experiments that we conduct to assess the computation times required to generate contrastive explanation
texts on large-scale WSRP instances and solutions. First, we describe the sets of instances and solutions that we use for
these experiments. Then, we present our experimental setting as well as the obtained results. Finally, we analyze these
results and provide some insights about our approach.

Instances and solutions. We carry out numerical experiments over 96 pairs of instances and solutions3. Instances
are built from real data provided by our industrial partner DecisionBrain. These data are processed to be anonymous and
adapted to our WSRP use case. The number of employees ranges from 17 to 80, the number of tasks from 55 to 2014,
and skill levels from 1 to 4. For each instance, a solution is computed thanks to a heuristic algorithm solving WSRP
instances. Thus, solutions may not be optimal and explanations may be positive.

Experimental setting. In Chapter 4, we present a list of contrastive question templates in Table 4.2 based on the
list of observation templates in Table 4.1. Let S be a feasible solution of an instance I. From a given question template,
many questions can be defined by filling its fields with values from I (e.g. the name of an employee). The number of
questions depends on the template itself, the contents of I and S. For instance, from (Ord,E) template, n questions can
be defined, with n the number of employees in I, by filling in the field “⟨employee i∗⟩” with the name of each of the n
employees. From (Ins,E) template, many more questions can be defined since not only an employee i∗ must be chosen to
fill in the field “⟨employee i∗⟩” but also a task not performed by i∗ to fill in the field “⟨task j∗⟩”.

In our numerical experiments, for each instance-solution pair and for each contrastive question template of Table 4.2,
we define a random sample of questions based on this template. We randomly draw a sample of 40 different questions for
each template4. Moreover, we limit the time allowed for computing the explanation text answering each of these questions
to 15s, which we consider as a reasonable time limit - other time limit could be chosen depending on the application
context. Then, for each question, we compute the explanation text by running one of the algorithms described in the
previous subsections and interrupt it if the computation lasts for more than 15s. The computations lasting for less than 15s
are counted as completed computations and their times are saved. The others are counted as interrupted computations.

All algorithms are implemented in Python 3.9 and all ILP models are solved with Gurobi Optimizer 9.5. All experiments
are run in MacOS 10.15.7 on a 2.3 GHz Quad-Core Intel Core i7 processor with 16GB RAM.

Results. We separate the results about computation times in two tables: Table 5.4 for the computations related
to polynomial-time algorithms (based on Algorithm 5.1) and Table 5.5 for the ones related to ILP-based algorithms
(based on Algorithm 5.2). In both tables, each line provides statistics about the computation times associated with one
contrastive question template. To calculate these statistics, we group together the computation times obtained for all the
instance-solution pairs and for all the random samples of questions by template. All the computations using polynomial-
time algorithms have been completed in less than 15s while part of the ones using algorithms relying on ILP have been
interrupted. Therefore, we do not provide the same statistics in the two tables.

3Instances and solutions are available in an online repository: https://github.com/MathieuLerouge/WSRP-data
4In the case where fewer than 40 different questions can be defined from a question template (e.g. with (Ord,E) template if n < 40), the

sample is made of all the possible questions that can be defined.

59

https://github.com/MathieuLerouge/WSRP-data

Question Computation times
template Median 3rd quartile Maximum Average

in s in s in s in s

(Ins,C) 0,022 0,035 0,162 0,025
(Ins,P,a) 0,023 0,038 0,104 0,026
(Ins,P,b) 0,114 0,273 3,395 0,213
(Ins,P,c) 0,061 0,093 0,180 0,067
(Ex,C) 0,023 0,035 0,208 0,025
(Ex,P,a) 0,023 0,037 0,091 0,026
(Ex,P,b) 0,115 0,282 3,855 0,222
(Ex,P,c) 0,063 0,095 0,192 0,070
(Ord,C,a) 0,023 0,037 0,100 0,027
(Ord,C,b) 0,024 0,038 0,100 0,027
(Ord,P,a) 0,027 0,041 0,108 0,030
(Ord,P,b) 0,027 0,041 0,120 0,031
(Ord,P,c) 0,030 0,045 0,116 0,034

Table 5.4: Statistics about the contrastive explanation computation times using polynomial-time algorithms.

Question Completed Computation times
template computation rate 1st quartile Median 3rd quartile

% in s in s in s

(Ins,E) 69,84 0,126 1,176 > 15
(Ex,E) 75,61 0,094 0,594 12,823
(Ord,E) 91,03 0,047 0,084 0,302

Table 5.5: Statistics about the contrastive explanation computation times using ILP-based algorithms.

In Table 5.4, for each template, we compute the median, third quartile, maximum and average of its corresponding
computation times. For instance, the generated explanation texts answering contrastive questions based on (Ins,C) template
have been computed on average in 0,025s; among these texts, at least 50% have been computed in less than 0,022s, 75%
in less than 0,035s, and the longest to be computed has required 0,162s.

In Table 5.5, for each question template, we first compute its completed computations rate i.e. the proportion of
completed computations (i.e. computed in less than 15s) among the computations of explanation texts related to this
template; we then compute the first quartile, median and third quartile of its computation times. For instance, among all
the computations of contrastive explanation texts answering questions based on (Ins,E) template, 69,84% are completed
in less than 15s, at least 25% have lasted for less than 0,126s and at least 50% for less than 1,176s. Note that, for (Ins,E)
template, the third quartile value is given as “> 15s” since less than 75% of the computations related to this template
have been completed in less than 15s.

Analysis and insights. Computational experiments show that contrastive explanation texts produced using polynomial-
time algorithms are computed in a very short time: most of them are computed in less than 0,3s. Such performances were
expected since these algorithms are polynomial in the number of employees and/or tasks, as mentioned in Subsection 5.3.2.
The experiments also show that, within question templates related to a given transformation family (insertion, exchange or
reordering), explanation texts related to polynomial-size transformations generally require more time to be computed than
the ones related to constant-size transformations (e.g. on average, (Ins,P,c) texts require 0,067s to be computed while
(Ins,C) texts require 0,025s). Such a trend could be anticipated for “Ins” and “Ex” families since the feasibility check for
constant-size transformations is performed in constant time while it is performed in polynomial time for polynomial-size
transformations (see Table 3.1). However, note that the results (Ins,C) and (Ins,P,a) are about the same. This can be
explained: even though the feasibility check related to (Ins,C) is computed in constant time, the process for building a
neighboring solution is linear, so that the overall explanation generation process is linear, like for (Ins,P,a). A similar
comment can be made for the other families. Finally, (Ins,P,b) and (Ex,P,b) templates present the longest computation
times (respectively 3,395s and 3,855s) which is related to their corresponding feasibility check complexity in O(m2).

Regarding contrastive explanation texts produced thanks to ILP-based algorithms, whatever the question template,
experiments show that more than 50% of the explanation texts computations last for a short time: less than 1,2s.
However, a significant proportion of theses computations have been interrupted as they have reached the time limit of 15s.
Depending on the question template, this proportion varies from 8,97 to 30,16%.

60

Thus, execution times required for computing explanation texts thanks to the algorithms described in the previous
subsections are mostly compatible with an online use in an interactive system. However, for questions related to exponential-
size transformations, we have no guarantee that they can be answered in a reasonable amount of time, shorter than 15s.

To sum up, in this section, we described our method for generating contrastive explanations. Given a contrastive
question q = qc(o,S, I), a two-phase checking process involving o, S and I is carried out. In Phase 1, preliminary checks
are performed. These are fast checks used to assess whether some conditions are satisfied, and if not, to output proof-like
negative explanation texts. In Phase 2, complete checks are conducted. These are based on the exploration of the set
of neighboring solutions N (o,S). Depending on o, we use either polynomial or ILP-based algorithms to explore N (o,S),
and then produce negative or positive explanation texts. Execution times required for computing contrastive explanation
texts thanks to these algorithms are mostly compatible with a near-real-time use of explanations by end-users. However,
for questions related to exponential-size neighborhoods, we have no guarantee that their contrastive explanation texts can
be computed in a reasonable amount of time, shorter than 15s.

5.4 Generating scenario explanation texts

This section focuses on the generation of scenario explanations, that-is-to-say explanations describing how changes
in the parameters of the current instance, suggested by end-users, affect the observation they made about the current
solution (see Section 2.3 and Subsection 4.2.2). Let us then consider S a feasible solution of an instance I, as well as
q = qs(o,S, I, I ′) a scenario question based on a question template of Table 4.2, where o is an observation about S and
I ′ is a relaxation of I. We recall that I ′ is said to be a relaxation of I if the set of feasible solutions of I is included in
the one of I ′ (see Subsection 4.2.2).

In Chapter 4, we defined various notions for modeling the explanation process, each one of them specified for each of
the three explanation types. We remarked that these notions applied to the cases of contrastive and scenario explanations
are very similar, especially the notion of the decision-problem interpreted question noted dpq(.): dpq(qs(o,S, I, I ′)) almost
coincides with dpq(qc(o,S, I ′)). In line with this remark, in order to generate scenario explanation texts, we can actually
use the method for generating contrastive ones and adapt it. This is detailed in the two following paragraphs.

Using the method for generating contrastive explanations... Let q be a scenario question qs(o,S, I, I ′). Let us
apply the method for generating a contrastive explanation text to the contrastive question q′ = qc(o,S, I ′), by following
the principles described in Figure 5.1, but ignoring the part where explanation texts are built.

• Firstly, we apply preliminary checks: we check whether conditions that are necessary for the set of neighboring
solutions N (o,S) to contain solutions that are feasible and better than S w.r.t. I ′ are satisfied.

• If preliminary checks are satisfied, then complete checks related to neighborhood exploration are performed. A
support solution is computed: among the neighboring solutions of N (o,S), it is the best feasible solution or, in the
absence of feasible neighboring solutions, the nearest-to-feasibility solution, where the feasibility and the distance to
feasibility are evaluated w.r.t. I ′.

Since these checks are performed w.r.t. the relaxation I ′, they provide exactly the explanatory content that we need for
building a scenario explanation answering q.

As the method described in Figure 5.1 is meant for contrastive explanations, we can not use the part of it which builds
the explanation texts because the resulting texts would not be consistent with scenario questions. We need to change this
part to build scenario explanation texts.

... and adapting the contrastive template texts to obtain scenario explanation texts. In order to obtain scenario
explanation texts, we replace the template texts used within the method designed for contrastive explanations with others
that are consistent with scenario questions. We need to do so within the prelimanary checks and the complete checks.

• Regarding preliminary checks, we adapt the template texts designed for building contrastive explanation texts
related to skill and time considerations. We replace the beginning of these template texts “In the current solution,
⟨the fact (is observed)⟩ because...” with “Despite the changes in the instance, ⟨meeting the foil⟩ remains impossible
because ...” For instance, the template text corresponding to preliminary checks related to skills becomes:
“Despite the changes in the instance, ⟨meeting the foil⟩ remains impossible because ⟨employee i∗⟩ has a skill level
of ⟨skei∗⟩ while ⟨task j∗⟩ has a skill level of ⟨sktj∗⟩.”

• Regarding complete checks, we adapt the template texts designed for building contrastive negative explanation
texts about time-infeasibility and non-improvement as well as positive explanation texts as follows.

61

- Case of time-infeasible support solution. As described in Figure 5.2, in order to build contrastive negative
explanation texts about time infeasibility, we concatenate four parts of texts. In order to obtain scenario ones,
we simply have to change the first part. This is shown in Figure 5.4. Since the second, third and fourth parts
are not affected by any changes, they are identical to the ones of Figure 5.3 and are cut from Figure 5.4.

- Case of feasible but non-improving support solution. Similarly, we change the first part of contrastive
negative explanation texts about non-improvement, described in Figure 5.3, so as to obtain scenario explanation
texts, which is depicted in Figure 5.5.

- Case of feasible and improving support solution. Finally, the contrastive positive explanation text is fully
replaced by the following scenario positive explanation text:
“Thanks to the changes in the instance, ⟨meeting the foil⟩ is possible and provides better solutions than the
current one such as the solution obtained by ⟨applying the specific transformation to get the support solution⟩.”

Start

Inputs: scenario question q = qs(o, S, I, I′) and
information related to support solution S⋆

“Despite the changes in the instance, ⟨meeting the
foil⟩ remains impossible due to time constraints.”ux(q) =

...

First part -
affirmation

Second part -
neighborhood structure

Figure 5.4: Building a scenario negative explanation texts about time-infeasibility given a support solution. Second, third
and fourth parts are cut from the figure because they are identical to the ones of Figure 5.2.

Start

Inputs: scenario question q = qs(o, S, I, I′) and
information related to support solution S⋆

“Despite the changes in the instance, ⟨meeting the
foil⟩ remains not interesting because it does not
improve the solution.”

ux(q) =

...

First part -
affirmation

Second part -
neighborhood structure

Figure 5.5: Building a scenario negative explanation text about non-improvement given a support solution. Second, third
and fourth parts are cut from the figure because they are identical to the ones of Figure 5.3.

To conclude, we described in this section our method for generating scenario explanations. It is essentially based on
the method related to contrastive explanations. Only some adaptations of the explanation texts were needed to output
texts which are consistent with scenario questions. Moreover, as the computation part of generation scenario explanations
coincides with the one of contrastive explanations, we did not carry out numerical experiments.

62

5.5 Generating counterfactual explanation texts

This section deals with counterfactual explanations i.e. explanations which aim at identifying what parameters could
be changed in the current instance and by how much, so as to make a solution expected by end-users feasible and better
than the current solution (see Section 2.3 and Subsection 4.2.2). Consider that end-users have a solution S of a WSRP
instance I, as well as a counterfactual question q = qh(o,S, I,J ′), with o an observation about S and J ′ a set of
relaxations of I.

Before describing the algorithmic procedure for generating counterfactual explanation texts, we recall that a positive
counterfactual explanation basically confirms that end-users are right to wonder about observing o in S because there
exists a neighboring solution S ′ that is feasible and better than S w.r.t. a relaxation I ′ of J ′. On the opposite, a negative
counterfactual explanation basically confirms that S is a good quality solution because none of the neighboring solutions of
N (o,S) are feasible and better than S w.r.t. any relaxation of J ′ and it provides a justification to that affirmation. More
specifically, a proof-like negative explanation provides an exhaustive and complete justification (in other words a proof)
while the argument-like negative explanation provides a convincing illustrative example (in other words an argument). See
Subsection 4.3.3 for details about explanations.

Structure of the generation of counterfactual explanation texts. The algorithmic procedure for answering the
counterfactual question q is represented in Figure 5.6. Like the one for answering contrastive explanations (see Figure 5.1
in Section 5.3), it consists in two parts which play similar roles to the ones they have in the contrastive case.

• Phase 1. Preliminary checks assess whether some conditions involving o, S, I and J ′ are satisfied. These conditions
are necessary for the set of neighboring solutions N (o,S) to contain solutions that are feasible and better than S
with respect to at least one relaxation I ′ in J ′. Checking these conditions as preliminary checks is relevant if they
can be computed in polynomial time, without having to build neighboring solutions, and if we manage to provide
narratable proof-like negative explanations when these checks are not satisfied.

• Phase 2. If the preliminary checks are satisfied, then, complete checks are performed to explore simultaneously
the set of relaxations J ′ and the set of neighboring solutions N (o,S) in order to look for a relaxation as well as a
neighboring solution that is feasible and better than S with respect to this relaxation.

Then, based on the results of these checks, explanation texts are built.

Preliminary checks are discussed in the following paragraphs while complete checks are detailed in the two following
subsections.

Preliminary checks. In the case of contrastive explanations, whenever the transformation from S to any neighboring
solution of N (o,S) requires one task j∗ to be newly assigned to one employee i∗, we proposed two preliminary checks:
one related to skill considerations and the other to time considerations:

- employee i∗ must be skilled enough to perform task j∗;
- employee i∗ must be able to perform j∗ as a single task in their planning, i.e. i∗ must have enough time to leave

their home location at the beginning of their working time window, travel to task j∗, perform it before the end of
its availability time window, and come back home before the end of their working hours.

In the counterfactual case, while it is still possible to carry out a preliminary check and generate a proof-like negative
explanation related to skill considerations, this seems more difficult for time considerations.

- Regarding the skill considerations, we can apply the preliminary check related to skill to all the relaxations of J ′.
If the check fails for all of them, we can easily build a proof-like negative explanation text which stands for all the
relaxations.

- Regarding the time considerations, suppose that we apply the above-mentioned preliminary check related to time to
all the relaxations of J ′. If the check fails for all of them, it seems more complicated to build a proof-like negative
explanation text which tells in a few sentences the time conflicts happening for every relaxation.

As a consequence, in the counterfactual case, we only carry out preliminary check related to skills.

Now that we described above the preliminary checks that we carry out within the procedure for generating counterfactual
explanations, we deal with the complete checks in the two following subsections. The first subsection defines the notion
of relaxation-solution pair, which plays a similar role as the support solution in the case of contrastive explanations,
and describes how to compute such a pair. The second one presents how we can adapt the method that we developed
in Subsection 5.3.3 for building contrastive explanation texts given a support solution to get a method for building
counterfactual explanation texts given a support relaxation-solution pair. Finally, after these two subsections, we provide
some numerical results about the execution time of our method for generating counterfactual explanations texts.

63

In
pu

t:
co

un
te

rfa
ct

ua
l

qu
es

tio
n

q
=

q h
(o

,S
,I

,J
′)

St
ar

t

Ch
ec

k
(in

po
ly

no
m

ia
lt

im
e)

ne
ce

ss
ar

y
co

nd
iti

on
s

fo
r

N
(o

,S
)

to
co

nt
ai

n
fe

as
ib

le
an

d
be

tt
er

so
lu

tio
ns

th
an

S
w

.r.
t.

an
y

I′
∈

J
′

Ar
e

al
ln

ec
es

sa
ry

co
nd

iti
on

s
sa

tis
fie

d?
no

ye
s

Fi
nd

in
J

′
a

su
pp

or
t

re
la

xa
tio

n
I⋆

w
ith

th
e

be
st

su
pp

or
t

so
lu

tio
n

S
⋆

in
N

(o
,S

)
Is

S
⋆

fe
as

ib
le

w
.r.

t.
I⋆

?
no

ye
s

Is
S

⋆
be

tt
er

th
an

S
w

.r.
t.

I⋆
?

no

ye
s

Bu
ild

an
ar

g.
-li

ke
ne

ga
tiv

e
ex

pl
an

at
io

n
te

xt
u

x
(q

)
ab

ou
t

in
fe

as
ib

ili
ty

us
in

g
I⋆

an
d

S
⋆

Bu
ild

an
ar

g.
-li

ke
ne

ga
tiv

e
ex

pl
an

at
io

n
te

xt
u

x
(q

)
ab

ou
t

no
n-

im
pr

ov
.

us
in

g
I⋆

an
d

S
⋆

Bu
ild

a
po

sit
iv

e
ex

pl
an

at
io

n
te

xt
u

x
(q

)
us

in
g

I⋆
an

d
S

⋆

Bu
ild

a
pr

oo
f-l

ik
e

ne
ga

tiv
e

ex
pl

an
at

io
n

te
xt

u
x

(q
)

ab
ou

t
un

sa
tis

fie
d

ne
ce

ss
ar

y
co

nd
iti

on

P
ha

se
1

-
P

re
lim

in
ar

y
ch

ec
ks

(n
ec

es
sa

ry
co

nd
iti

on
s)

P
ha

se
2

-
C

om
pl

et
e

ch
ec

ks
(n

ei
gh

bo
rh

oo
d

ex
pl

or
at

io
n)

O
ut

pu
t:

ex
pl

an
at

io
n

te
xt

u
x

(q
)

En
d

Fi
gu

re
5.

6:
Al

go
rit

hm
ic

fra
m

ew
or

k
fo

rg
en

er
at

in
g

co
un

te
rfa

ct
ua

le
xp

lan
at

io
n

te
xt

s.

64

5.5.1 Identifying support relaxation-solution pair

As shown in Figure 5.6, the first step within the complete checks is to identify a support relaxation-solution pair, which
is made of a particular relaxation of J ′ along with a particular neighboring solution of N (o,S) and whose properties will
be then exploited for building relevant counterfactual explanations texts.

We recall that, in Subsection 5.3.2, for the case of contrastive explanations, we introduced the notion of support
solution which intuitively corresponds to the “best” or the “most convincing” neighboring solution to present to end-users.
More precisely, the support solution is i) the best feasible neighboring solution in N (o,S) or ii) in the absence of feasible
neighboring solutions in N (o,S), the nearest-to-feasibility neighboring solution. In this second case, the distance to
feasibility of a neighboring solution is measured thanks to the feasibility gap (see Subsection 3.3.1) of the task insertion
involved in the transformation turning S into this neighboring solution; in other words, the feasibility gap allows to compare
neighboring solutions, to rank them and select the “best” one (relatively to the feasibility gap).

For the counterfactual case, we must have not only criteria for identifying the “best” neighboring solution but also
criteria for identifying the “best” relaxation, so as to obtain a support relaxation-solution pair. In the following paragraphs,
we describe our assumptions on the relaxations allowed by end-users and on their preferences regarding these relaxations.
This allows us then to define the notion of support relaxation-solution pair.

Assumptions about allowed alterations for defining relaxations. In Subsection 4.2.2, we proposed that end-users
wishing to ask a counterfactual question do not explicitly specify the set J ′ but rather implicitly define it by indicating
a set of allowed alterations of the parameters of I. Therefore, we assume that J ′ can be described by the choices of
alterations that end-users allow to apply to the parameters of I.

Choices of alterations depend on the application context. In some cases, it might be possible to extend the availability
time window of a task; sometimes, it might be inconceivable. Ultimately, end-users should be the ones who decide which
parameters can be altered or not. To illustrate our approach, in this section, we assume that end-users allow changes of
the availability time window [lbtj , ubtj] and duration dtj of every task j ∈ T concerned by the observation o. Later in
this section, we will discuss other possible choices of parameters to alter and how these alternative choices would impact
the ILP modeling.

Assumptions about preferences between relaxations. All the relaxations of I are not equally satisfying. For
instance, a relaxation that is obtained from the current instance I by applying a few small alterations of parameters is
usually more satisfying than one obtained by applying numerous large alterations. However, does one prefer one large
alteration to various small ones? Again, it depends on the application context.

To illustrate our approach, in this section, we assume that end-users express preferences between relaxations in terms
of magnitude and number of alterations that must be applied to the current instance to obtain these relaxations. More
precisely, we assume that end-users prefer to minimize, as much as possible, in the following order:

- the sum of task duration alterations as it would reduce the quality of solution;
- the largest alteration value;
- the number of alterations;
- the sum of alterations.

Thanks to these assumptions, we are now able to compare relaxations and select the “best” or “more convincing” one.

Support relaxation-solution pair. Given a counterfactual question qh(o,S, I,J ′), we define a support relaxation-
solution pair, noted (I⋆,S⋆), made of a relaxation I⋆ ∈ J ′ and a neighboring solution S⋆ ∈ N (o,S), such that:

- S⋆ is a support solution relatively to I⋆;
- among all the support solutions related to each relaxation in J ′, S⋆ has the smallest feasibility gap;
- among all the relaxations in J ′ whose support solution has the same feasibility gap as S⋆, I⋆ is the “best” relaxation

(relatively to the assumptions about preferences detailed above).

Now that the notion of support relaxation-solution pair is defined, we can move on to computing such a pair. In the
case of a contrastive explanation about an observation o related to a solution S, in order to identify a support solution,
we proposed two kinds algorithms depending on the structure of the neighborhood N (o,S): polynomial-time algorithms
and ILP-based ones. However, in the case of counterfactual explanations, we exclusively propose ILP-based algorithms
to identify the support relaxation-solution pair. Namely, in this case, algorithms must explore not only the neighborhood
N (o,S) but also the set of relaxations J ′ which is potentially large, therefore analyzingN (o,S) relatively to each relaxation
of J ′ would be intractable.

65

ILP-based algorithms developed for computing support relaxation-solution pairs use various ILP models which depend
on the template of the observation o involved in the counterfactual question. All these models are based on a generic ILP
model that we call counterfactual transformation model.

We recall that we introduced the main model mm(I) (see Model 1 in Subsection 3.2.2) for modeling our WSRP
use case, the foil model fm(o,S, I) (see Model 2 in Subsection 4.3.2) for modeling the theoretical exploration in the
neighborhood N (o,S) of a solution that would be feasible and better than S and the contrastive transformation model
ctm(o,S, I) (see Model 3 in Subsection 5.3.2) for computing support solution for contrastive explanations related to
specific observation templates. In line with ctm(o,S, I), we are again interested in working with ILP models that are
optimizing a single employee planning, as opposed to optimizing the family of all employee plannings as done in mm(I).
Narrowing our focus to a single employee planning leads to a drastic decrease in the size of the ILP models compared to
mm(I), which enhances the efficiency of their solving. However, this does not allow to deal with counterfactual questions
and explanations related to observation templates involving all employees namely (Ins,P,c) and (Ex,P,c). Similarly, we will
focus on observation templates comprising a single given task to insert, reassign, exchange or reorder. Thus, the approach
developed in this section only applies to the subset of observation templates which specifies a single employee and a single
task of interest in their text: (Ins,C), (Ins,P,a), (Ins,E), (Ex,C), (Ex,P,a), (Ex,E), (Ord,C,a), (Ord,P,c) and (Ord,E). Note
that each of these templates specifies an employee of interest i∗ as well as a task of interest j∗ within their text.

In the following paragraphs, we describe first the counterfactual transformation model and then the ILP-based algorithms
developed for identifying the support relaxation-solution pair.

Counterfactual transformation model. Given a counterfactual question q = qh(o,S, I,J ′), we call counterfactual
transformation model, noted htm(o,S, I,J ′), the multi-objective ILP model used for finding a support relaxation-solution
pair (I⋆,S⋆), with the aim to answer q. htm(o,S, I,J ′) is obtained by combining Model 4 with observation-dependent
parameters and constraints from Table 5.6.

• Model 4 is a generic multi-objective ILP model which aims at finding the alterations to apply to the parameters of
I in order to obtain the support relaxation I⋆ and at finding the support planning (R⋆

i∗ , C⋆
i∗) which must replace

(Ri∗ , Ci∗) in the solution S in order to obtain the support solution S⋆. Model 4 is generic because it uses a set T ⋆

and constraint (M4.13), whose explicit mathematical contents depend on the observation template of o and need to
be specified to get a fully defined model.

• The purpose of Table 5.6 is precisely to specify, for each of the above-mentioned observation templates, the subset
T ⋆ and the constraints (M4.13). T ⋆ is a subset of the set of tasks T . It contains only the tasks that are involved
in the planning of employee i∗ as well as possible other tasks that are relevant for the transformation to apply to S
(e.g. the task to insert in the planning of i∗). (M4.13) corresponds to neighboring constraints which ensure that, if
the planning of employee i in S is changed for the planning obtained by solving Model 4, then the obtained solution
is a neighboring solution of N (o,S). Neighboring constraints are noted φ(X) ∈ N (o,S) in Model 4 in reference to
the neighboring constraints in the foil model fm(q) which play a similar role.

htm(o,S, I,J ′) is similar to the contrastive transformation model ctm(o,S, I). However, it differs from it on various
aspects which we detail below.

• Similarities and differences with contrastive transformation model. Similarly to ctm(o,S, I), and by opposition
to mm(I) which deals with optimizing a solution i.e. the plannings of all the employees of E , htm(o,S, I,J ′) focuses
on optimizing a single employee planning, namely the planning of i∗. Therefore, as for ctm(o,S, I), only a subset of
the decision variables of mm(I) are involved in htm(o,S, I,J ′); and there are again no sums over E or constraints
repeated over E but only a focus on i∗, sums that are indexed over T and constraints that repeated over T in
mm(I) are over T ⋆, etc. However, compared to ctm(o,S, I), since htm(o,S, I,J ′) aims at optimizing alterations
of instance parameters, there are new decision variables involved in htm(o,S, I,J ′); and constraints as well as the
objective function must be adapted to this aim.

• Decision variables. All the decision variables of ctm(o,S, I) are also involved in htm(o,S, I,J ′):
- for each task j ∈ T ⋆, the start time decision variable Tj , defining the time at which j starts to be performed

by employee - if j is performed;
- for each pair of activities (j, k) ∈ (Ai∗ \ {ri∗})× (Ai∗ \ {di∗ , j}), the path decision variable Ui∗jk is equal to

1 if i∗ performs the activity j and then moves to the activity k, and to 0 otherwise;
- the BET and FLT decision variables T lb

j∗ and T ub
j∗ , where T lb

j∗ (resp. T ub
j∗) corresponds to the time at which i∗

can start to perform j∗ while having all the time constraints related to the activities performed by i∗ before
(resp. after) j∗ satisfied and while respecting the lower (resp. upper) bound of the availability window of j∗.

66

However, other decision variables are also involved in htm(o,S, I,J ′).
- First, several integer variables, that we call altering variables, are involved in htm(o,S, I,J ′) to artificially

alter some parameters of the instance I. For j ∈ T ⋆, three integer variables ∆Dtj , ∆LBTj and ∆UBTj are
introduced allowing respectively to reduce the duration dtj of task j, to decrease the lower bound lbtj of its
time window and to increase its upper bound ubtj . In addition to these altering variables, we introduce ∆Tmax,
an integer variable for measuring the greatest value taken by any of the altering variables.

- Second, for j ∈ T ⋆, we associate to the altering variables ∆Dtj , ∆LBTj and ∆UBTj , the binary variables
XDtj , XLBTj and XUBTj , which are equal to 1 or 0 for indicating whether their corresponding altering
variable takes a positive value or a null one.

• Multi-objective function. The multi-objective function (M4.1) is minimized according to a lexicographic order.
1. The first objective aims at tightening the gap between the BET and FLT variables T lb

j∗ and T ub
j∗ by minimizing

the difference T lb
j∗ − T ub

j∗ . We recall that having T lb
j∗ = T ub

j∗ means that the transformation is feasible.
2. The second objective relates to the first objective of mm(I) as it maximizes the total working time of the

planning of i∗.
3. The third objective relates to the second objective of mm(I) as it minimizes the total traveling time of the

planning of i∗.
4. The fourth objective minimizes the total reduction of tasks duration induced by altering variables ∆Dtj for

j ∈ T ⋆. Its purpose is to enable decreasing the duration of the performed tasks only if extending the tasks’ time
windows, via ∆LBTj and ∆UBTj , is not enough for successfully inserting j∗. Such a preference for altering
first time windows and then duration is applied as decreasing tasks’ duration actually depreciates the solution
since, by mm(I), the primary objective is to maximize the total tasks duration performed by the employees.

5. The purpose of the fifth objective which minimizes ∆Tmax is to prevent as much as possible large alterations
of the parameters.

6. The sixth objective seeks to minimize the number of parameters alterations.
7. The last objective seeks to minimize the sum of parameters alterations.

• Constraints. The constraints of htm(o,S, I,J ′) are essentially the same as the ones of ctm(o,S, I) with possibly
some adaptations.

- Flow constraints (M4.2) to (M4.4) are the same as constraints (M3.2) to (M3.4).
- As for ctm(o,S, I), there is no equivalent of the skill constraints (M1.5) of mm(I) in htm(o,S, I,J ′).
- Occurrence constraints (M4.6) are the same as (M3.6).
- Availability, working hours and sequencing constraints spanning labels from (M3.7.a) to (M3.11.b) in

ctm(o,S, I) are also involved in htm(o,S, I,J ′) with labels spanning from (M4.7.a) to (M4.11.b), with
some changes. Basically, all these constraints of htm(o,S, I,J ′) are obtained from the one ctm(o,S, I) as
follows: wherever an instance parameter that is subject to alteration is included in the constraint expression,
its corresponding alteration variable is added to this expression.

- Constraints (M4.12.a) and (M4.12.b) are the same as (M3.12.a) and (M3.12.b).
- Neighboring constraints (M4.13) are the same as (M3.13) and are detailed in Table 5.6.

However, a few other constraints are also involved in htm(o,S, I,J ′).
- Constraints (M4.14.a) to (M4.14.c) ensure that the binary variables XDtj , XLBTj and XUBTj for j ∈ T ⋆

play their expected role, namely indicating whether their corresponding altering variable take a positive value
or a null one. Besides, these constraints limit the value of the altering variables ∆Dtj , ∆LBTj and ∆UBTj

for j ∈ T ⋆ to some “reasonable bounds”: the duration dtj of a task j can not be reduced by more than its
own value; there is no point in having the lower and upper bounds of the availability time window of task
respectively smaller and higher than the lower and upper bounds of the working time window of employee i∗.

- Constraint (M4.15) ensures that ∆Tmax measures as expected the greatest value taken by any of the altering
variables.

ILP-based algorithms for computing support relaxation-solution pair. Given a counterfactual question q =
qh(o,S, I,J ′), we propose an ILP-based algorithm for computing a support relaxation-solution pair (I⋆,S⋆) used for
answering the question q. Regardless of the observation template of o, this algorithm is described in Algorithm 5.3. It
consists in solving (at line 1) the counterfactual transformation model htm(o,S, I,J ′) which we described above. The
results of this solving are then used to build the support instance (at lines 2 and 3) and the support solution (at lines 5
and 6).

Before ending this subsection, let us comeback to the discussion, that we started in the beginning of this Subsection,
about the way I can be altered, in particular which parameters can be changed and up to what bounds.

67

lex min
(

T lb
j∗ − T ub

j∗ , −
∑

j∈T ∗

∑
k∈Ai∗ , k ̸=di∗ ,j

Ui∗jk dtj ,
∑

j∈Ai∗ , j ̸=ri∗

∑
k∈Ai∗ , k ̸=di∗ ,j

Ui∗jk trjk,∑
j∈T ∗

∆Dtj , ∆Tmax,
∑

j∈T ∗

XDtj + XLBTj + XUBTj ,
∑

j∈T ∗

∆Dtj + ∆LBTj + ∆UBTj

)
(M4.1)

s.t. ∑
k∈Ai∗ , k ̸=di∗

Ui∗di∗ k = 1 (M3.2) ≡ (M4.2)∑
j∈Ai∗ , j ̸=ri∗

Ui∗jri∗ = 1 (M3.3) ≡ (M4.3)∑
j∈Ai∗ , j ̸=k,ri∗

Ui∗jk =
∑

j′∈Ai∗ , j′ ̸=di∗ ,k

Ui∗kj′ ∀ k ∈ T ∗ (M3.4) ≡ (M4.4)∑
k∈Ai∗ , k ̸=di∗ ,j

Ui∗jk ≤ 1 ∀ j ∈ T ∗ (M3.6) ≡ (M4.6)

lbtj −∆LBTj ≤ Tj ∀ j ∈ T ∗ \ {j∗} (M4.7.a)
lbtj∗ −∆LBTj∗ ≤ T lb

j∗ (M4.7.b)

Tj ≤ ubtj + ∆UBTj − dtj + ∆Dtj ∀ j ∈ T ∗ \ {j∗} (M4.8.a)
T ub

j∗ ≤ ubtj∗ + ∆UBTj∗ − dtj∗ + ∆Dtj∗ (M4.8.b)

lbei∗ + trdi∗ k ≤ Tk ∀ k ∈ T ∗ \ {j∗} (M4.9.a)
lbei∗ + trdi∗ j∗ ≤ T lb

j∗ (M4.9.b)

Tj + dtj −∆Dtj + Ui∗jk trjk ≤ Tk +
(

1− Ui∗jk

)
ubtj ∀ j ̸= k ∈ T ∗ \ {j∗} (M4.10.a)

T ub
j∗ + dtj∗ −∆Dtj∗ + Ui∗j∗k trj∗k ≤ Tk +

(
1− Ui∗j∗k

)
ubtj∗ ∀ k ∈ T ∗ \ {j∗} (M4.10.b)

Tj + dtj −∆Dtj + Ui∗jj∗ trjj∗ ≤ T lb
j∗ +

(
1− Ui∗jj∗

)
ubtj ∀ j ∈ T ∗ \ {j∗} (M4.10.c)

Tj + dtj −∆Dtj ≤ Ui∗jri∗ (ubei∗ − trjri∗) +
(

1− Ui∗jri∗

)
ubtj ∀ j ∈ T ∗ \ {j∗} (M4.11.a)

T ub
j∗ + dtj∗ −∆Dtj∗ ≤ Ui∗j∗ri∗ (ubei∗ − trj∗ri∗) +

(
1− Ui∗j∗ri∗

)
ubtj∗ (M4.11.b)

T lb
j∗ − T ub

j∗ ≥ 0 (M3.12.a) ≡ (M4.12.a)
T ub

j∗ ≤ Tj∗ ≤ T lb
j∗ (M3.12.b) ≡ (M4.12.b)

φ(X) ∈ N (o,S) (M3.13) ≡ (M4.13)

∆Dtj ≤ XDtj dtj ∀ j ∈ T ∗ (M4.14.a)
∆LBTj ≤ XLBTj max(lbtj − lbei∗ , 0) ∀ j ∈ T ∗ (M4.14.b)
∆UBTj ≤ XUBTj max(ubei∗ − ubtj , 0) ∀ j ∈ T ∗ (M4.14.c)

∆Dtj , ∆LBTj , ∆UBTj ≤ ∆Tmax ∀ j ∈ T ∗ (M4.15)

Ui∗jk ∈ {0, 1} ∀ j ∈ Ai∗ \ {ri∗}, ∀ k ∈ Ai∗ \ {di∗ , j}

Tj ∈ N ∀ j ∈ T ∗

T lb
j∗ , T ub

j∗ ∈ N

XDtj , XLBTj , XUBTj ∈ {0, 1} ∀ j ∈ T ∗

∆Dtj , ∆LBTj , ∆UBTj ∈ N ∀ j ∈ T ∗

∆Tmax ∈ N

Model 4: Counterfactual transformation model htm(o,S, I,J ′), i.e. multi-objective ILP model used to identify instance
parameter alterations and a support planning for a specific employee (mentioned in o) so as to build a support relaxation-
solution pair for answering the counterfactual question qh(o,S, I,J ′).

68

Labels Counterfactual questions Subset of tasks T ⋆ Neighborhood constraints

(Ins,C) “How to make ⟨employee i∗⟩ perform
⟨task j∗⟩ just after ⟨activity k∗⟩?” (T ∩ Ri∗) ∪ {j∗}

With k′ the activity after k∗ in Ri∗ , Ui∗jk = 1 ∀ (j, k) consecutive in Ri

Ui∗jk = 1 ∀ (j, k) ̸= (k∗, k′)
Ui∗k∗j∗ = Ui∗j∗k′ = 1

(Ins,P,a)
“How to make ⟨employee i∗⟩ perform
⟨task j∗⟩ between any pair of consecutive
activities of their planning?”

(T ∩ Ri∗) ∪ {j∗}



∑
j,k∈Ri

consecutive

Ui∗jk = |Ri∗ | − 2

∑
k∈Ai∗ \{j}

Ui∗jk = 1 ∀ j ∈ T ⋆

(Ins,E)
“How to make ⟨employee i∗⟩ perform
⟨task j∗⟩ in addition to the
activities of their planning?”

(T ∩ Ri∗) ∪ {j∗}



∑
j,k∈Ri

consecutive

Ui∗jk < |Ri∗ | − 2

∑
k∈Ai∗ \{j}

Ui∗jk = 1 ∀ j ∈ T ⋆

(Ex,C) “How to make ⟨employee i∗⟩ perform
⟨task j∗⟩ in place of ⟨task k∗⟩?” (T ∩ Ri∗) ∪ {j∗}

With k1 and k2 the activities before and
after k∗ in Ri∗ , Ui∗jk = 1 ∀ (j, k) consecutive in Ri

Ui∗jk = 1 ∀ (j, k) ̸= (k1, k∗), (k∗, k2,)
Ui∗k1j∗ = Ui∗j∗k2 = 1

(Ex,P,a)
“How to make ⟨employee i∗⟩ perform
⟨task j∗⟩ in place of any of the
activities of their planning?”

(T ∩ Ri∗) ∪ {j∗}



∑
j,k∈Ri

consecutive

Ui∗jk = |Ri∗ | − 3

∑
j∈T ⋆\{j∗}

∑
k∈Ai∗ \{j}

Ui∗jk = |Ri∗ | − 3

∑
k∈Ai∗ \{j∗}

Ui∗j∗k = 1

(Ex,E)
“How to make ⟨employee i∗⟩ perform
⟨task j∗⟩ rather than any of their tasks
(even if it means changing the order
of the activities)?”

(T ∩ Ri∗) ∪ {j∗}



∑
j,k∈Ri

consecutive

Ui∗jk < |Ri∗ | − 3

∑
j∈T ⋆\{j∗}

∑
k∈Ai∗ \{j}

Ui∗jk = |Ri∗ | − 3

∑
k∈Ai∗ \{j∗}

Ui∗j∗k = 1

(Ord,C,a)
“How to make ⟨employee i∗⟩ perform
⟨task j∗⟩ later in their planning,
just after ⟨task k∗⟩?”

T ∩ Ri∗

With j1 and j2 the activities before and
after j∗ as well as k′ after k∗ in Ri∗ , Ui∗jk = 1 ∀ (j, k) consecutive in Ri

Ui∗jk = 1 ∀ (j, k) ̸= (k1, k∗), (k∗, k2,)
Ui∗k1j∗ = Ui∗j∗k2 = 1

(Ord,P,c)
“How to make ⟨employee i∗⟩ perform
⟨task j∗⟩ at any other step
in their planning?”

T ∩ Ri∗



∑
j,k∈Ri

consecutive

Ui∗jk = |Ri∗ | − 4

∑
k∈Ai∗ \{j}

Ui∗jk = 1 ∀ j ∈ T ⋆

(Ord,E)
“How to make ⟨employee i∗⟩ perform
the activities of their planning
in a different order?”

T ∩ Ri∗



∑
j,k∈Ri

consecutive

Ui∗jk < |Ri∗ | − 4

∑
k∈Ai∗ \{j}

Ui∗jk = 1 ∀ j ∈ T ⋆

Table 5.6: Parameters and constraints involved in Model 4 for various possible observation templates. In the table
content, S is the feasible solution of the instance I both given as inputs in Algorithm 5.3.

69

Algorithm 5.3: ILP-based algorithm for computing a support relaxation-solution pair

Inputs:
I an instance
S a feasible solution of I
o an observation about S (which specifies who is employee i∗)
J ′ a set of relaxations of I

1 Solve the counterfactual transformation model htm(o,S, I,J ′)
2 Obtain the values of the altering decision variables resulting from solving htm(o,S, I,J ′)
3 Build the support relaxation I⋆ by applying these instance parameter alterations to I
4 Obtain the values of the BET and FLT decision variables T lb

j∗ and T ub
j∗ , and store them respectively as BET stb

j∗

and FLT stf
j∗

5 Build the support planning (R⋆
i∗ , C⋆

i∗) of employee i∗ given the values of spatial and temporal decision variables
resulting from solving htm(o,S, I,J ′) and save related information:
task j∗ is inserted in the planning of employee i∗ after its kth activity, with BET stb

j∗ and FLT stf
j∗

6 Create support solution S⋆ by copying S and replacing the planning of i∗ with the support planning (R⋆
i∗ , C⋆

i∗)

Output:
(I⋆,S⋆) a support relaxation-solution pair (as well as the alterations at line 2 and the information at line 5)

Discussions about allowed alterations. It is clear that there are many ways to alter the parameter of I. In this paper,
we chose to locate the potential alterations on task availability time window and duration data, to allow such alterations
on all the tasks of T ⋆ and to limit such alterations to some “reasonable bounds”. However, one could also choose, for
instance, to locate alterations on employee working time window data in addition to the ones on the task data, to allow
task alterations only for some selected tasks of T ⋆, and to bound altering variables with arbitrary smaller bounds than our
“reasonable bounds”.

Still, such other choices could actually be taken into account in the counterfactual transformation model
htm(o,S, I,J ′) considering some adaptations. One would have i) to introduce a pair of integer decision variables
∆LBEi∗ and ∆UBEi∗ , as well as their corresponding binary decision variables XLBEi∗ and XUBEi∗ , for altering the
time window of i∗; ii) to only consider ∆LBTj , ∆UBTj and ∆Dtj for the selected tasks of T ⋆; iii) to adapt the fourth
objective in the multi-objective function; iv) to adapt constraints (M4.7.a) to (M4.11.b) to involve ∆LBEi∗ and ∆UBEi∗

as well as ∆LBTj , ∆UBTj and ∆Dtj only for the selected tasks of T ⋆; v) replace the “reasonable bounds” in constraints
(M4.14.a) to (M4.14.c) with arbitrarily chosen bounds; etc.

Thus, we can let the end-user - who is actually the person who knows the best the application context of the WSRP
solved - choose the locations and the bounds of the potential alterations to apply on the parameters of I and still be able
to define a counterfactual transformation model htm(o,S, I,J ′) adapted to such choices.

In this subsection, given a counterfactual question q = qh(o,S, I,J ′), we described how we compute the support
relaxation-solution pair (I⋆,S⋆) by resorting to ILP-based algorithms. In the following subsection, we describe how we use
(I⋆,S⋆) in order to build an explanation text ux(q) answering q.

5.5.2 Building counterfactual explanation texts from support relaxation-solution pair

In Subsection 5.3.3, we developed a method which, given a support solution, builds contrastive explanations texts by
concatenating pieces of template texts and by using information related to the support solution. We drew a distinction
between three cases: either the support solution is infeasible, either it is feasible but not better than the current solution,
or it is feasible and better than the current solution (in each case, with respect to the current instance).

In Section 5.4, we adapted this method, more specifically the pieces of texts involved in the method, to build scenario
explanation texts which are consistent with the relaxation I ′.

In order to obtain a method which given a support relaxation-solution pair build counterfactual explanations texts,
similarly to the scenario case, we adapt the pieces of texts involved in the method related to contrastive explanation texts.

70

Start

Inputs: counterfactual question q = qh(o, S, I, J ′) and
information related to support relaxation-solution (I⋆, S⋆)

“Despite all possible changes that could
be applied to the current instance,
⟨meeting the foil⟩ remains impossible
due to time constraints.
For example, assume that the following
changes are applied to the current instance:
⟨alterations applied to I to obtain I⋆⟩.”

ux(q) =

...

First part -
affirmation

Second part -
neighborhood structure

Figure 5.7: Building a counterfactual negative explanation texts about time-infeasibility given a support relaxation-solution
pair. Second, third and fourth parts are cut from the figure because they are identical to the ones of Figure 5.2.

Start

Inputs: counterfactual question q = qh(o, S, I, J ′) and
information related to support relaxation-solution (I⋆, S⋆)

“Despite all possible changes that could
be applied to the current instance,
⟨meeting the foil⟩ remains not interesting
because it does not improve the solution.
For example, assume that the following
changes are applied to the current instance:
⟨alterations applied to I to obtain I⋆⟩.”

ux(q) =

...

First part -
affirmation

Second part -
neighborhood structure

Figure 5.8: Building a counterfactual negative explanation text about non-improvement given a support relaxation-solution
pair. Second, third and fourth parts are cut from the figure because they are identical to the ones of Figure 5.3.

71

Adapting the method for building contrastive explanations texts from support solution to the counterfactual
case. Given a counterfactual question q = qh(o,S, I,J ′) and its corresponding support relaxation-solution pair (I⋆,S⋆),
we propose a method for building counterfactual explanation texts that is adapted from the one for building contrastive
explanation texts. It also consists in filling in predefined template texts with information obtained from the support content
as well as typical expressions (see Section 5.2). Similarly to the contrastive case, we draw a distinction between three
cases: either the support solution is infeasible, either it is but not better than the current solution, or it is feasible and
better than the current solution (in each case, with respect to the support relaxation). We describe our method for each
of these cases below.

• Case of infeasible support solution. We adapt the method for building contrastive negative explanation texts
about time-infeasibility, which consists in concatenating four parts of texts as described in Figure 5.2, by changing
the first of these parts so as to obtain counterfactual explanation texts. This adaptation is shown in Figure 5.7.
Since only the first part of the template texts concatenation is affected by changes, the second, third and fourth
parts are cut from the figure, they are identical to the ones of Figure 5.3.

• Case of feasible but non-improving support solution. Similarly, we adapt the method for building contrastive
negative explanation texts about non-improvement described in Figure 5.3 so as to obtain counterfactual explanation
texts which is presented in Figure 5.8.

• Case of feasible and improving support solution. Finally, the counterfactual positive explanation text can be
adapted as follows:
“By applying the following changes to the current instance ⟨alterations applied to I to obtain I⋆⟩, ⟨meeting the foil⟩
is possible and provides better solutions than the current one such as the solution obtained by ⟨applying the specific
transformation to get the support solution⟩.”

Within the last subsections, we presented how we generate counterfactual explanation texts. In the next and last
subsection, we study the performances of this generation.

5.5.3 Numerical experiments
In Subsection 5.3.4, we presented the numerical study conducted to assess the computation times needed for generating

contrastive explanation texts on large-scale WSRP instances and solutions. In this subsection, we continue this numerical
study but focus this time on the generation of counterfactual explanation texts. The purpose remains the same: in the
perspective of integrating explanation text generation into a system where end-users can request and obtain explanations
in near-real-time, we seek that the algorithms designed for generating counterfactual explanation texts operate within a
time-frame compatible with such usage. In the following paragraphs, we present first our experimental setting, then the
obtained results and finally our analysis of these results.

Experimental setting. Most of the experimental setting contents and principles used in the study of contrastive
explanations are retained for the study of counterfactual explanations: i) we conduct numerical experiments using the
same 96 pairs of instances and solutions; ii) for each instance-solution pair and for each question template, we prepare
a random sample of 40 questions; iii) we limit the time allocated for computing the explanation text answering each of
these questions to 15s. However, some aspects of the experimental setting of the counterfactual explanation study are
different from the one of the contrastive explanation study. First, we conduct these numerical studies only for the question
template that are listed in Table 5.6, not all the labels listed in Table 4.1. This limitation is due to the inability of the
counterfactual transformation model to handle questions involving all employees, namely questions based on (Ins,P,c) and
(Ex,P,c) templates. Second, since we are conducting the numerical studies with counterfactual questions, not contrastive
questions, we need to specify within the counterfactual questions the allowed instance parameter alterations. Indeed, any
counterfactual question template text includes a field for specifying the allowed instance parameter alterations, which is
not the case of the corresponding contrastive question template text. We decide to allow alterations in line with the
assumptions presented in Subsection 5.5.1: alterations are exclusively allowed on task availability time-window bounds and
task durations, and are limited to with “reasonable bounds”.

Results. Table 5.7 presents the results of our computation time study about our method for generating counterfactual
explanation texts using algorithms based on Algorithm 5.3. Specifically, the table provides some statistics about these
computation times. To calculate these statistics, we aggregate the computation times obtained for all the instance-solution
pairs and for all the random samples of questions by question template. For each question template, the table presents first
the completed computations rate, i.e. the proportion of computations completed in less than 15s; the table then presents
the first quartile, median, third quartile and maximum of the computation times. For example, among all the computations
of counterfactual explanation texts answering questions based on (Ins,C) template, 100% have been completed in less than
15s, at least 25% haven taken less than 0,057s, at least 50% less than 0,079s, at least 75% less than 0,120s and the

72

longest computation has taken 0,378s. Given a question template, if computations of counterfactual explanation texts
have been interrupted due to the 15s time limit, then quartiles may be unknown and replaced by “> 15s”. For example,
since less than 75% of the computations related to (Ins,E) have been completed, the third quartile and the maximum are
unknown.

Question Completed Computation times
template rate 1sr quartile Median 3rd quartile Maximum Average

% in s in s in s in s in s

(Ins,C) 100 0,057 0.079 0,120 0,378 0,091
(Ins,P,a) 100 0,063 0,089 0,132 0,413 0,100
(Ins,E) 73,72 0,202 1,067 > 15 > 15 -
(Ex,C) 100 0,055 0,076 0,119 0,358 0,089
(Ex,P,a) 100 0,069 0,100 0,150 0,324 0,112
(Ex,E) 71,89 0,195 1,044 > 15 > 15 -
(Ord,C,a) 100 0,057 0,082 0,126 0,233 0,092
(Ord,P,c) 100 0,059 0,084 0,127 0,278 0,094
(Ord,E) 92,27 0,087 0,147 0,302 > 15 -

Table 5.7: Statistics about the counterfactual explanation computation times.

Analysis and insights. Experiments show that the counterfactual explanation computations related to constant-size
and polynomial-size transformations are always completed while the ones related to exponential-size transformations may
be interrupted. Such differences could be anticipated. In the case of constant-size and polynomial-size transformations, the
neighboring constraints of the counterfactual transformation model ensure that the order of the activities in the employee
planning does not changed. Moreover, in the case of constant-size transformations, they even fix the values of some path
decision variables. On the opposite, in the case of exponential-size transformations, the neighboring constraints allow
the activities to be freely ordered in the employee planning. Therefore, the neighboring constraints reduce significantly
the feasible solution space of the counterfactual transformation model in the case of constant-size and polynomial-size
transformations compared to the case of exponential-size ones. This can help to significantly fasten the solving process.

Regarding constant-size and polynomial-size transformations, experiments show that related counterfactual explanation
texts are computed in a very short time: less than 0,5s. A similar conclusion was drawn in the case of contrastive
explanations (see Subsection 5.3.4), Still, counterfactual explanation computations are about 2 to 4 times longer than the
contrastive ones (e.g. on average, (Ins,C) contrastive explanation texts require 0,025s to be computed while counterfactual
ones require 0,091s). Such a computation time increase, between contrastive and counterfactual explanations, was expected
since counterfactual explanation computations require to solve an ILP model (in order to explore the set of allowed
alterations of instance parameters) while corresponding contrastive explanation computations only required polynomial-
time algorithms. Moreover, among question templates related to a given transformation topic (insertion, exchange or
reordering), counterfactual explanation texts related to polynomial-size transformations generally require more time to be
computed than the ones related to constant-size transformations (e.g. on average, (Ins,P,a) texts require 0,100s to be
computed while (Ins,C) texts require 0,091s). A similar trend was noticed in the case of contrastive explanations, which
was expected due to the increase of computational complexity. In the case of counterfactual explanations, this trend could
also be expected since the neighboring constraints of the counterfactual transformation model related to constant-size
transformations fix many values of path decision variables, hence reducing significantly the feasible solution space of the
model, by comparison to the case of polynomial-size transformations.

Regarding question templates related to exponential-size transformations, whatever the template, experiments show
that more than 50% of the explanation text computations last for a short time: less than 1,2s. However, a significant
proportion of these computations have been interrupted as they have reached the time limit of 15s. About 70-75% of the
explanation text computations related to (Ins,E) and (Ex,E) templates are completed in less than 15s and about 90-95%
of the explanation text computations related to (Ord,E) templates are completed. These results are quite similar to the
ones obtained when computing contrastive explanations related to exponential-size transformations. In other words, here,
the exploration of instance parameter alterations does not seem to significantly increase the computation time between
contrastive and counterfactual explanations.

73

To conclude, execution times needed for computing counterfactual explanation texts thanks to our algorithms are mostly
compatible with an online use in an interactive system. However, for questions related to exponential-size transformations,
we have no guarantee that their corresponding counterfactual explanation texts can be computed in a reasonable amount
of time, shorter than 15s. Further investigations would be necessary, including i) to explore whether there exists a
correlation between certain instance-solution characteristics and fluctuations in computation times, ii) to study the size of
the counterfactual transformation models between various instance-solution pairs and various question templates, iii) to
gauge the impact of the choice of allowed instance parameter alterations (number and magnitude) on computation times.

5.6 Conclusion
In this chapter, we described our method for generating explanations texts in response to end-user questions for each

of the three types of explanations, namely contrastive, scenario and counterfactual. Regardless of the type, our approach
consists essentially in two parts.

• First, given an end-user question q, checks are carried out in order to identify a mathematical content from which
useful information can be extracted for writing an explanation text ux(q). In the case of a contrastive question
q = qc(o,S, I) or a scenario question q = qs(o,S, I, I ′) with I ′ relaxation of I, this mathematical content is a
solution that we call support solution S⋆. Among all the solutions of the neighborhoodN (o,S), S⋆ is the best feasible
neighboring solution or, in the absence of such feasible neighboring solutions, the nearest-to-feasibility neighboring
solution, where the feasibility is measured with respect to the instance I if q is contrastive or the relaxation I ′ if
q is scenario. In the case of counterfactual explanations q = qh(o,S, I,J ′) with J ′ set of relaxations of I, the
mathematical content to identify is a pair made of a relaxation from J ′ and a neighboring solution, that we call
support relaxation-solution pair (I⋆,S⋆). Among all the pairs (I ′,S ′) with I ′ in J ′ and S ′ in N (o,S) support
solution of I ′, (I⋆,S⋆) is the pair such that S⋆ has the smallest feasibility gap and I⋆ has the least alterations in
terms of magnitude and number. Depending on the type of q and depending on the structure of the neighborhood
N (o,S), polynomial-time or ILP-based algorithms are used to compute this support content (support solution S⋆

or support relaxation-solution pair (I⋆,S⋆)).
• Second, an explanation text ux(q) is built by concatenating pieces of template texts with fields to fill in with

information obtained from the support content as well as predefined observation-dependent expressions that we call
typical expressions. The choice of pieces of template texts to assemble depends on the type of q, the feasibility and
quality of the support solution S⋆ as well as the structure of the neighborhood N (o,S). Such a method allows
us to build explanation texts corresponding to positive, proof-like negative or argument-like negative explanations.
Figures 5.9 and 5.10 synthesize this method in the case of negative explanations based on the infeasibility or the
non-improvement of the neighboring solutions given any type of explanations.

Numerical studies show that the computations of explanation texts are mostly performed under 15s, which we consider as
an execution time that is compatible with end-users usage of explanations. However, for explanation texts computed with
ILP-based algorithms, we have no guarantee that their corresponding explanation texts can be computed in a reasonable
amount of time, shorter than 15s.

Now that we have methods for generating explanations that are adapted to end-users, we propose in Chapter 6 to
design a system integrating these methods and implement a prototype of graphic user interface such that end-users can
practically ask questions about their solutions and obtain explanations in return.

74

Start

Inputs: question q and information related to support content
(support solution S⋆ or support relaxation-solution pair (I⋆, S⋆))

“Despite the changes in the instance,
⟨meeting the foil⟩ remains impossible
due to time constraints.”

ux(q) =
“In the current solution, ⟨the
fact (is observed)⟩ because of
time constraints.”

ux(q) =

“Despite all possible changes that could
be applied to the current instance,
⟨meeting the foil⟩ remains impossible
due to time constraints.
For example, assume that the following
changes are applied to the current instance:
⟨alterations applied to I to obtain I⋆⟩.”

ux(q) =

q is scenario

q is contrastive q is counterfactual
First part -
affirmation
depending on type

“Consider the new solution obtained from
the current one by ⟨applying the specific
transformation to get the support solution⟩.
This new solution is not feasible.”

ux(q) +=

“None of the ⟨neighbors⟩ are feasible. For
example, consider the new solution obtained
from the current one by ⟨applying the specific
transformation to get the support solution⟩.
This new solution is not feasible.”

ux(q) +=

solutions of N (o, S) are route-equal solutions of N (o, S) are not route-equalSecond part -
neighborhood structure

“Indeed, by performing all the tasks from ⟨backward
critical activity⟩ to ⟨task j∗⟩ at the earliest possible
time, ⟨employee i∗⟩ can end ⟨task j∗⟩ at the earliest
at ⟨stb

j∗ + dtj∗⟩. However, ⟨task j∗⟩ must be ended
by ⟨ubtj∗⟩.”

ux(q) +=

“Indeed, by performing all the tasks from ⟨backward
critical activity⟩ to ⟨task j∗⟩ at the earliest possible
time, ⟨employee i∗⟩ can end ⟨task j∗⟩ at the earliest
at ⟨stb

j∗ + dtj∗⟩. However, ⟨task j∗⟩ must be ended
at the latest at ⟨stf

j∗ + dtj∗⟩ so that ⟨employee i∗⟩
can perform all the activities from ⟨task j∗⟩ to
⟨forward critical activity⟩.”

ux(q) +=

stb
j + dtj∗ > ubtj∗ stb

j + dtj∗ ≤ ubtj∗
Third part -
time-infeasibility

“Thus ⟨meeting the foil⟩ is impossible.”ux(q) +=
Fourth part -
conclusion

Output: explanation text ux(q)

End

Figure 5.9: Building a negative explanation text about time-infeasibility given any type of question.

75

Start

Inputs: question q and information related to support content
(support solution S⋆ or support relaxation-solution pair (I⋆, S⋆))

“Despite the changes in the instance,
⟨meeting the foil⟩ remains not
interesting because it does not
improve the solution.”

ux(q) =

“In the current solution, ⟨the
fact (is observed)⟩ because
⟨meeting the foil⟩ does not
improve the solution.”

ux(q) =

“Despite all possible changes that could
be applied to the current instance,
⟨meeting the foil⟩ remains not interesting
because it does not improve the solution.
For example, assume that the following
changes are applied to the current instance:
⟨alterations applied to I to obtain I⋆⟩.”

ux(q) =

q is scenario

q is contrastive q is counterfactual
First part -
affirmation
depending on type

“Consider the new solution obtained from
the current one by ⟨applying the specific
transformation to get the support solution⟩.
This solution is feasible but not better than
the current one.”

ux(q) +=

“Among all the feasible ⟨neighbors⟩, the best
feasible solution is obtained from the current
solution by ⟨applying the specific transformation
to get the support solution⟩. However, this new
solution is not better than the current one.”

ux(q) +=

solutions of N (o, S) are route-equal solutions of N (o, S) are not route-equalSecond part -
neighborhood structure

“Indeed, the total working time of the new solution
⟨twt(S⋆)⟩ min is shorter than the one of the current
solution ⟨twt(S)⟩ min.”

ux(q) +=

“Indeed, the total working time of the new solution
⟨twt(S⋆)⟩ min is equal to the one of the current
solution, but its total traveling time ⟨trt(S⋆)⟩ min
is greater than the one of the current solution
⟨trt(S)⟩ min.”

ux(q) +=

twt(S⋆) < twt(S) twt(S⋆) = twt(S), trt(S⋆) ≥ trt(S)Third part -
comparison of solution quality

“Thus, ⟨meeting the foil⟩ is not interesting.”ux(q) +=
Fourth part -
conclusion

Output: explanation text ux(q)

End

Figure 5.10: Building a negative explanation text about non-improvement given any type of question.

76

Chapter 6 Designing and implementing a system for
presenting explanations to end-users

6.1 Introduction

As described in Chapter 3, the aim of this work is to develop an approach for explaining solutions of an optimization
problem to the end-users of a system solving this problem. More precisely, this work focuses on a use case of Workforce
Scheduling and Routing Problem (WSRP) that we specified and modeled in Section 3.2.

In Chapter 4, we presented our approach for modeling explanations about solutions of WSRP instances. It is summa-
rized in Figure 4.2. It considers that, from observations about a solution, end-users define questions in order to request
explanations. Three different types of explanations, introduced in Section 2.3, were modeled in this chapter: contrastive
explanations aiming at clarifying why one fact occurred in the solution in contrast to another; scenario explanations de-
scribing how changes in the input instance parameters affect the fact observed in the output solution; and counterfactual
explanations which aims at identifying how parameters could be changed in the input instance to obtain a user-defined
output solution. Table 4.1 in Subsection 4.2.1 describe all the possible observations that end-users can make about their
solution. They are given as template texts with fields to fill with values related to the instance and the solution. Then,
Table 4.2 in Subsection 4.2.2 shows how each observation can be changed into three forms of questions, “why”, “what
if” and “how to”, also formulated as template texts. Each one of these forms is associated with a different explanation
type, respectively contrastive, scenario and counterfactual. Chapter 4 then described the mathematical steps enabling us
to find, for a given question asked by the end-users, the mathematical content necessary to answer it. This mathematical
content is however not intelligible for the end-users. Given such questions, and after some mathematical steps, end-users
theoretically end-up obtaining intelligible explanation texts.

We thus detailed in Chapter 5 our method for generating such explanation texts given end-users’ questions as in-
puts. First, regardless of the type of explanation, our method consists essentially in identifying a solution that we call
support solution. Since questions are based on observations and since observations are assumed to be related to solution
transformations which define solution neighborhoods (see Subsection 4.2.1), any end-user question can be related to a
solution neighborhood. If this neighborhood contains feasible solutions, the support solution is defined as the best feasible
neighboring solution; if the neighborhood does not contain any feasible solution, the support solution is defined as the
neighboring solution that is the nearest to be feasible (see Subsection 5.3.2). The way the support solution is computed
depends on the type of explanations. Then, given an end-user question, once the support solution has been identified, by
analyzing its feasibility and its objective value, we create explanation texts answering the question. More precisely, we use
pieces of template texts, whose contents depend on the analysis of the support solutions and the type of explanations, and
combine them to build explanation texts (see e.g. Figures 5.2 and 5.3).

Now that we developed generation techniques for each type of explanations, we propose to incorporate and structure
these techniques into a system which we refer to as an explanation system. This system serves two primary purposes: i)
providing end-users with explanations of various types and on various observations about the solution they have; ii) allowing
end-users to save a feasible support solution identified during the explanation process, along with its corresponding instance,
for potential future use of this support solution as a new starting point for requesting explanations. We recall that in
the case of scenario or counterfactual explanations, since the feasibility of a support solution is analyzed with respect to
a support relaxation (i.e. an instance obtained by altering parameters of the original instance so as to increase its set of
feasible solution, see Subsection 4.2.2), both relaxed instance and support solution must be saved. In order to fulfill this
second purpose, the explanation system is equipped with a history, i.e. a set of instances, which are all relaxations of the
same instance, such that each instance is mapped with one or several feasible solutions.

The explanation system operates as follows. End-users provide the explanation system with an instance and a feasible
solution that they obtained thanks a solving system applied to this instance. This pair of instance and solution initializes
the history, and becomes the pair of current instance and solution. Then, the system enables end-users to ask questions
about this current solution in order to obtain explanations of different types in return. Whenever the support solution
on which is based an explanation is feasible, the system enables end-users to add this support solution, along with its
instance (either the current instance or a support relaxation) to the history. After having expanded the history, end-users
can decide to keep asking questions about the same current solution or to switch to another pair of instance and solution
from the history for requesting explanations about them. Thus, this iterative process enables end-users not only to obtain
explanations about the initial solution that they got from a solving system, but also to gradually explore the set of feasible
solutions (as well as the set of relaxations) and collect explanations about all of these solutions.

Finally, this chapter also presents a Graphic User Interface (GUI) prototype integrating the explanation system described

77

above. This GUI can be seen as a proof of concept of all the content developed in this work.
The remainder of this chapter is organized as follows. In Section 6.2, we detail the working principle of the explanation

system and illustrate its use on an example. In Section 6.3, we present the GUI prototype of integrating the explanation
system by describing its main view and functionalities.

6.2 Explanation system

6.2.1 Design of the explanation system
Figure 6.1 describes the working principle of the explanation system. Before providing a detailed presentation of this

working principle, we provide some general remarks. First, we note that the system handles contrastive, scenario and
counterfactual questions: each question type is associated with a series of steps surrounded by a yellow dashed box.
Second, end-users may repetitively ask requests for explanation of the same type. However, scenario and counterfactual
explanations are accessible only after obtaining contrastive explanations and if their support solutions are infeasible. The
reason for this design will be explained. We present below the working principle of the explanation system

Working principle of the explanation system. We detail, step by step, the working principle of the explanation
system depicted in Figure 6.1.

(1) End-users initialize the system by providing an instance and a feasible solution that they obtained thanks a solving
system applied to this instance.

(2) A history, i.e. a set of instances such that each instance is mapped with one or several feasible solutions, is initialized
with the given input pair of instance and solution.

(3) End-users choose within the history an instance I, that we call current instance, as well as a feasible solution S of
I, that we call current solution.

(4) End-users tell whether they want to request a contrastive explanation about S.
• If they do not want to, the system ends.
• Otherwise, the system begins a series of steps related to contrastive explanations, starting with step (C1).

(C1) End-users make an observation o about S, using one of the observation templates of Table 4.1, and define
a contrastive question q = qc(o,S, I).

(C2) An explanation text ux(q) is computed using the method described in Section 5.3. It is based on a support
solution S⋆

c . This text ux(q) and the support solution S⋆
c are presented to end-users.

(C3) If S⋆
c is feasible with respect to I, then the system goes to step (C4).

If S⋆
c is not, then the system goes to step (5).

(C4) Since S⋆
c is a feasible solution of I, end-users can add S⋆

c to the history, as a feasible solution associated
with I. Regardless of the choice made by end-users, the system goes back to step (3).

(5) End-users tell whether they want to request a scenario or a counterfactual explanation about S.
• If end-users want to request a scenario explanation about S, the system begins a series of steps related to

scenario explanations, starting with step (S1).
(S1) End-users specify a relaxation I ′ of I so as to define a scenario question q′ = qs(o,S, I, I ′).

Note that the observation o remains the same as the one used for the contrastive question at step (C1).
(S2) An explanation text ux(q′) is computed using the method described in Section 5.4. It is based on a support

solution S⋆
s . This text ux(q′) and the support solution S⋆

s are presented to end-users.
(S3) If S⋆

s is feasible with respect to I ′, then the system goes to step (S4).
If S⋆

s is not, then the system goes back to step (5).
(S4) Since S⋆

s is a feasible solution of I ′, end-users can add I ′ along with S⋆
s to the history. Regardless of the

choice made by end-users, the system goes back to step (5).
• If end-users want to request a counterfactual explanation about S, the system begins a series of steps related

to counterfactual explanations, starting with step (H1).
(H1) End-users specify a set of relaxations J ′ of I so as to define a counterfactual question q′ = qh(o,S, I,J ′).
(H2) An explanation text ux(q′) is computed using the method described in Section 5.5. It is based on a support

instance I⋆ and a support solution S⋆
h. ux(q′), I⋆ and S⋆

h, are presented to end-users.
(H3) If S⋆

h is feasible with respect to I⋆, then the system goes to step (H4).
If S⋆

h is not, then the system goes back to step (5).
(H4) End-users can decide whether to save in the history I ′ along with S⋆

h, as S⋆
h is a feasible solution of I ′.

Regardless of the choice made by end-users, the system goes back to step (5).
• If they do not want to request any scenario or a counterfactual explanation, the system goes back to step (3).

78

St
ar

t

In
pu

ts
:

an
in

st
an

ce
an

d
a

fe
as

.s
ol

ut
io

n

(1
) In

iti
al

ize
a

hi
st

or
y

w
ith

in
pu

t
in

st
an

ce
an

d
so

lu
tio

n

(2
)

Ch
oo

se
cu

rr
en

t
in

st
an

ce
-s

ol
ut

io
n

pa
ir

(I
,S

)
fro

m
hi

st
or

y

(3
)

Re
qu

es
t

co
nt

ra
st

iv
e

ex
pl

an
at

io
n?

(4
)

no ye
s

C
on

tr
as

tiv
e

ex
pl

an
at

io
n

Ch
oo

se
ob

se
rv

at
io

n
o

to
bu

ild
co

nt
ra

st
iv

e
qu

es
tio

n
q

(C
1)

Co
m

pu
te

ex
pl

.
te

xt
u

x
(q

)
w

ith
su

pp
or

t
so

lu
tio

n
S

⋆ c

(C
2)

S
⋆ c

fe
as

ib
le

?

(C
3)

no

ye
s

Ch
oo

se
w

he
th

er
to

sa
ve

S
⋆ c

or
no

t

(C
4)

Re
qu

es
t

sc
en

ar
io

or
co

un
te

rfa
ct

ua
l

ex
pl

an
at

io
n?

(5
)

no

ye
s,

sc
en

ar
io

ye
s,

co
un

te
rfa

ct
ua

l

En
d

Sc
en

ar
io

ex
pl

an
at

io
n

Ch
oo

se
in

st
an

ce
I′

to
bu

ild
sc

en
ar

io
qu

es
tio

n
q′

(S
1)

Co
m

pu
te

ex
pl

.
te

xt
u

x
(q

′)
w

ith
su

pp
or

t
so

lu
tio

n
S

⋆ s

(S
2)

S
⋆ s

fe
as

ib
le

w
.r.

t.
I?

no

ye
s

(S
3)

Ch
oo

se
w

he
th

er
to

sa
ve

(I
′ ,S

⋆ s
)

or
no

t

(S
4)

C
ou

nt
er

fa
ct

ua
l

ex
pl

an
at

io
n

Ch
oo

se
in

st
an

ce
se

t
J

′

to
bu

ild
co

un
te

rfa
ct

ua
l

qu
es

tio
n

q′

(H
2)

Co
m

pu
te

ex
pl

.
te

xt
u

x
(q

′)
w

ith
su

pp
or

t
in

st
.

I⋆
an

d
so

l.
S

⋆ h

(H
2)

S
⋆ h

fe
as

ib
le

w
.r.

t.
I⋆

?

(H
3)

no

ye
s

Ch
oo

se
w

he
th

er
to

sa
ve

(I
⋆
,S

⋆ h
)

or
no

t

(H
4)

Fi
gu

re
6.

1:
Ge

ne
ra

lw
or

kin
g

pr
in

cip
le

of
th

e
ex

pl
an

at
io

n
sy

st
em

.

79

Two comments can be made about this system.
First, regardless of the explanation type (contrastive, scenario and counterfactual), the system allows end-users (at

steps (C4), (S4) and (H4)) to add to the history support solutions (S⋆
c , S⋆

s and S⋆
h) if these solutions are feasible with

respect to their corresponding instance (I, I ′ and I⋆). Thus, it is not required that support solutions are better than the
current solution S to allow end-users to add them to the history. The reason for this choice is that, in our view, such an
explanation system may be used by end-users not only to obtain explanations about their solutions, but also to explore
the set of solutions that are feasible with respect to their current instance I (and even explore the set of relaxed instances
by altering some data of I through scenario or counterfactual explanations). In other words, end-users may wish to save
other feasible solutions than S, even if they are not as good as S. They may want to navigate within the set of feasible
solutions, from solution to solution, to make sure that there is not a better solution than the first solution they use for
initializing the history, which they obtain from an optimization system. Besides, end-users may have other criteria than the
bi-objective function values to assess the quality of solutions in practice, so that they may prefer a solution with slightly
worst bi-objective function values but better performances on these other criteria.

Second, as the system is designed, end-users cannot request scenario or counterfactual explanations directly after picking
a current instance and a current solution from the history. They can ask for an explanation answering a scenario question
qs(o,S, I, I ′) or a counterfactual question qh(o,S, I,J ′), only after requesting an explanation answering contrastive
question qc(o,S, I) (with the same observation o for the three questions), and only if this contrastive explanation is
negative with no feasible support solutions. We propose such a chaining of explanation types for the following reason.
Suppose that, given the contrastive question q = qc(o,S, I), there exists S ′ ∈ N (o,S) that is feasible with respect to I
i.e. the explanation x(q) is positive or negative due to non-improvement. Then, S ′ is also feasible with respect to any
relaxation I ′ of I. Therefore, the explanation to qs(o,S, I, I ′) is positive or negative due to non-improvement. However,
this result has actually nothing to do with the fact that I has been relaxed into I ′, since S ′ was already feasible with
respect to I. And it would not make sense to write an explanation expressing that the relaxation of I has helped obtaining
S ′. Thus, in our opinion, it is relevant to allow end-users to request scenario question only if this contrastive explanation
is negative with no feasible support solutions. A similar reasoning can be made for counterfactual explanations.

Now that the working principle of the explanation system has been presented, we propose in the following subsection
to illustrate its use on an example.

6.2.2 Usage example of the explanation system
In this subsection, we present a usage example of the explanation system. We assume that end-users have provided

the system with a history containing the instance associated with the solution depicted in Figure 3.1 in Subsection 3.2.1.
In addition, we assume that they have selected this instance and this solution as current instance and solution.

Observing that task 27 is not performed by Ellen while her route passes through it, end-users first request a contrastive
explanation by asking a contrastive question based on observation template (Ins,C):

- Why is Ellen not performing task 27 just after task 17?
The system gives them in return a negative contrastive explanation text as follows:
- In the current solution, Ellen is not performing task 27 just after task 17 because of time constraints. Consider

the new solution obtained from the current one by inserting task 27 just after task 17 in Ellen’s planning. This
new solution is infeasible. Indeed, by performing all the tasks from task 26 to task 27 at the earliest possible time,
Ellen can end task 27 at the earliest at 4:37PM. However, task 27 is not available after 3:00PM. Thus, having Ellen
perform task 27 just after task 17 is impossible.

In addition, along with this text, the system could provide a visual representation of the negative contrastive explanation,
like the one in Figure 6.2 The graph on the left depicts employees’ routes and the Gantt chart on the right their schedules,
as in Figure 3.1. But, the graph on the left also emphasizes the insertion of task 27 between task 17 and task 8 in Ellen’s
route with the use of dash lines, and the Gantt chart highlights the time-infeasibility of Ellen’s planning in the support
solution. In the Gantt chart, the bracket on the left of task 26, at 12:00PM, represents the lower bound lbt26 of the
availability time-window of task 26. It suggests that task 26 cannot be started earlier (shifted to the left) due to lbt26.
In other words, task 26 is the backward critical activity of the insertion of task 27 after task 17 in Ellen’s planning (see
Figure 3.4 in Part 3.3.1.3). The bracket at 3:00PM represents the upper bound ubt27 of the availability time-window of
task 27. The vertical dashed line at 4:37PM, on the right of task 27 emphasizes the time at which Ellen ends performing
task 27. Along with the two arrows spanning from 4:37PM to 3:00PM, it suggests that task 27 needs to be started earlier
so that Ellen could end it by ubt27. But we can understand that it is not possible to apply such a time shift as the sequence
of task performances and travels between task 26 and task 27 presents no time interruptions.

80

14.5 14.75 15.0 15.25 15.5 15.75 16.0 16.25

47.25

47.5

47.75

48.0

48.25

48.5

longitude

lat
itu

de

El

Al

Ad

Fa

Ca

12

15

31

1

3 7

8

17

26

27

30
6

14

16

19
20

25

28

910

11

24

4

13

18

21
2229

25

23

El

Al

Ad

Fa

Ca

7AM 9AM 11AM 1PM 3PM 5PM 7PM

hour

7 30 3 26 1 17 27 ...

lbt26 ubt27

28 16 25 14 20 6 19

11 9 10 24

13 18 21 29 4 22

5 23 2

Figure 6.2: Representation of support solution involved in the negative contrastive explanation.

Thanks to the contrastive explanation text, end-users understand that, among other things, the upper-bound ubt27
of the availability time-window of task 27 causes time-infeasibility of the neighboring solutions. So, they may wonder if
changing the value 3:00PM of ubt27 to 4:37PM would help getting a feasible support solution. To see if it is the case,
they ask a scenario question (still based on observation template (Ins,C)), as follows:

- Ellen is not performing task 27 just after task 17, but what if task 27 is available until 4:37PM (instead of 3:00PM)?
Then, the system gives them in return a negative scenario explanation text as follows:
- Despite the change in the instance, having Ellen perform task 27 just after task 17 remains impossible due to time

constraints. Consider the new solution obtained from the current by inserting task 27 just after task 17 in Ellen’s
planning. This new solution is infeasible. Indeed, by performing all the tasks from task 26 to task 8 at the earliest
possible time, Ellen can end task 8 at the earliest at 5:24PM. However, task 8 is not available after 4:40PM. Thus,
having Ellen perform task 27 just after task 17 remains impossible.

Again, along with this text, the system could provide a visual representation of the negative scenario explanation text,
like the one in Figure 6.3 for instance. This representation is similar to the one of Figure 6.2. The difference is that, as
expressed in the explanation text, the time-infeasibility of the support solution is now related to the availability of task 8,
and no longer the one task 27. Therefore, in the Gantt chart on the right is represented a time-infeasibility related to ubt8.
In other words, task 8 is the forward critical activity of the insertion of task 27 after task 17 in Ellen’s planning.

14.5 14.75 15.0 15.25 15.5 15.75 16.0 16.25

47.25

47.5

47.75

48.0

48.25

48.5

longitude

lat
itu

de

El

Al

Ad

Fa

Ca

12

15

31

1

3 7

8

17

26

27

30
6

14

16

19
20

25

28

910

11

24

4

13

18

21
2229

25

23

El

Al

Ad

Fa

Ca

7AM 9AM 11AM 1PM 3PM 5PM 7PM

hour

7 30 3 26 1 17 27 8 ...

lbt26 ubt8

28 16 25 14 20 6 19

11 9 10 24

13 18 21 29 4 22

5 23 2

Figure 6.3: Representation of support solution involved in the negative scenario explanation.

81

Finally, since changing the upper-bound of the availability time-window of task 27 is not enough to get a feasible
support solution, end-users may want to let the system find a way to alter the instance parameters to get one. So they
request a counterfactual explanation, by asking a counterfactual question (still based on observation template (Ins,C)) in
which they restrict alterations to be applied on availability time-windows of the tasks involved in Ellen’s planning:

- How to make Ellen perform task 27 just after task 17, considering that at most two of the availability time-window
bounds of all the tasks involved in Ellen’s planning can be altered?

Then, the system gives them in return a positive counterfactual explanation text as follows:
- Assume that the following changes are applied to the current instance: task 27 is available until 4:37PM (instead of

3:00PM) and task 8 is available until 5:24PM (instead of 4:40PM). Then, having Ellen perform task 27 just after
task 17 is possible and provides a better solution than the current one.

Along with this text, the system could provide a visual representation of the feasible support solution as in Figure 6.4.

14.5 14.75 15.0 15.25 15.5 15.75 16.0 16.25

47.25

47.5

47.75

48.0

48.25

48.5

longitude

lat
itu

de

El

Al

Ad

Fa

Ca

12

15

31

1

3 7

8

17

26

27

30
6

14

16

19
20

25

28

910

11

24

4

13

18

21
2229

25

23

El

Al

Ad

Fa

Ca

7AM 9AM 11AM 1PM 3PM 5PM 7PM

hour

7 30 3 26 1 17 27 8

28 16 25 14 20 6 19

11 9 10 24

13 18 21 29 4 22

5 23 2

Figure 6.4: Representation of support solution involved in the positive counterfactual explanation.

In this section, we proposed a design of an explanation system allowing end-users to request and obtain contrastive,
scenario and counterfactual explanations. We also presented a usage example showing how these three types of explanations
can be consecutively involved within a series of interactions between end-users and the system. In the next section, we
present an implementation of this system integrated within a Graphic User Interface.

6.3 Graphic User Interface (GUI) prototype
As a way to test all the concepts developed in this manuscript, we implement the explanation system described in the

previous section and propose a Graphic User Interface (GUI) prototype which integrates this system so that end-users can
graphically interact with it. In the following subsections, we describe the different functionalities of this GUI prototype,
which include the ones related to the explanation system. We provide various annotated screen captures for illustrating
these functionalities. For the screen captures, the GUI prototype is initialized with the same history as in the example of
usage of Subsection 6.2.2 and the contrastive, scenario and counterfactual questions are also the same as in this example
of usage.

6.3.1 Elementary views of the GUI
On start-up, the GUI opens on the “Home” view which is shown Figure 6.5. As all the other views of the GUI, this

view is structured in four parts as follows.
• In the top part 1 is a header presenting the name of the system “XWSRP” and a short description of it.
• Just below the header 2 is a horizontal panel for exploring the history content. It consists in two drop-down lists:

- one for selecting the current instance among the instances stored in the history;
- one for selecting the current solution among the feasible solutions of the selected instance that are stored in

the history.
In the screen capture, the current instance and solution are respectively “instance_demo.1” and “solution_demo.1.1”.

82

• On the left 3 is a navigation panel with six tabs which can be used to change of views:
- the “Home” tab which directs to precisely the home view;
- the “Instance description” tab whose view allows to look at the data of the current instance;
- the “Instances comparison” tab whose view allows to compare the data of two different instances;
- the “Solution description” tab whose view allows to look at the data of the current solution;
- the “Solutions comparison” tab whose view allows to compare the data of two different solutions;
- the “Solution explanation” tab whose view allows to question the current solution.

The tab corresponding to the current view has a darker background, a we can see it on the screen capture with the
“Home” tab.

• On the right of the navigation panel 4 is the main content of the view. In the case of the “Home” view, this main
content is simply a text describing the overall purpose of the explanation system and the specific purposes of the
different views of the GUI that can be accessed by clicking on the tabs of the navigation panel. The main content
is essentially the part that changes between the different views.

1

2

3 4

Figure 6.5: GUI “Home” view.

We present below the two views that display the data of the current instance and the current solution.
First, Figure 6.6 shows the “Instance description” view which can be used for inspecting the data of the current instance.

From left to right and top to bottom, the main content contains five parts:
- a table 1 presenting the data related to employees, namely their names, their skill levels and their working time-

window bounds (e.g. “Ellen”, “2”, “08:00AM” and “06:00PM”);
- a table 2 presenting the data related to tasks, namely their ids, their skill levels, their availability time-window

bounds and their duration (e.g. “T1”, “1”, “08:00AM” and “06:00PM”, and “40”);
- a map 3 showing a geographic area of the world with colored dots corresponding to the locations of the employees,

each employee having their own color (e.g. Ellen’s color is a dark blue);
- a map 4 showing the same geographic area with dots corresponding to the locations of tasks;
- a panel 5 with some key figures about the instance, including the number of employees, the number of tasks, the

total available employee working time and the total task duration.

83

1

2

3 4

5

Figure 6.6: GUI “Instance description” view, which presents the data of the current instance.

84

Second, Figure 6.7 shows the “Solution description” view which can be used for inspecting the data of the current
solution. Here, the main content contains three parts.

• In the top left part 1 is a map showing the employees’ routes in the current solution, each employee being associated
with a color used for drawing their route. It is based on the same geographic area as the maps showing employees’
and tasks’ locations in the “Instance description” view (see Figure 6.6). This map is actually the GUI equivalent
of the representation of the routes in Figure 3.1. Besides, by hovering the mouse over some parts of the routes,
information are displayed. By hovering it over a dot corresponding to a task, parameters of this task are shown (skill
level, duration and availability time-window) so that one does not need to go back to the “Instance description”
view to find this information.

• In the top right part 2 is a Gantt chart representing the employees’ schedules in the current solution, each employee
being associated with a color used for drawing their schedule which matches the color of their route in the map
1 . This chart is the GUI equivalent of the representation of the schedules in Figure 3.1. Similarly to the routes,

by hovering the mouse over some parts of the schedules, information are displayed. By hovering it over a colored
rectangle corresponding to a task, information about the performance of this task are shown (including its start and
end times). Over a gray rectangle corresponding to an employee travel between two tasks, information about the
time needed for this travel is shown.

• At the bottom 3 is a panel with key figures about the current solution: the total working time and total traveling
time, which are the two objectives that are optimized in line with the main model (see Model 1 in Subsection 3.2.2).

1 2

3

Figure 6.7: GUI “Solution description” view, which presents the data of the current solution.

Once end-users are familiar with the current instance and solution thanks to the views described in the previous sections,
they may be interested in requesting explanations. This is the topic of the next subsection.

85

6.3.2 Requesting explanations about the current solution
In this subsection, we present how the “Solution explanation” view can be used in order to request explanations about

the current solution.

As mentioned in Subsection 6.2.1, we consider that end-users start by requesting contrastive explanations. Therefore,
the “Solution explanation” view first allows end-users to submit contrastive questions as shown in Figure 6.8.

• The top part of the main content 1 corresponds to employees’ routes and schedules in the current solution. These
two representations are the same as in the “Solution description” view. This allows end-users to see the solution
while defining contrastive questions.

• Below 2 is the panel for defining a contrastive question and requesting an explanation in response. From left to
right, top to bottom, it is composed of:

- a drop-down list for selecting on which contrastive question template end-users want to base their question
(e.g. “Why is employee _ not performing task _ just after activity _?”);

- one to three drop-down lists for selecting the values of the fields to fill in the question template (e.g. “Ellen”,
“T27” and “T17”);

- a text area for the question (e.g. “Why is employee Ellen not performing task T27 just after activity T17?”);
- a “Submit” button to request an explanation answering the defined question.

1

2

Figure 6.8: GUI “Solution explanation” view - part 1: defining contrastive questions.

After submitting a contrastive question, an explanation is generated according to the method detailed in Section 5.3.
The view gets expanded below the panel related to the definition of the question in order to display the explanation as
shown in Figure 6.9.

• The upper part 3 displays the routes and schedules in the support solution involved in the contrastive explanation.
Regarding the map, as explanations focus on one employee, in order to put the emphasis on this employee, all the
routes of the other employees are faded. Regarding the Gantt chart, if the support solution is feasible, then the chart
is a regular Gantt chart; if it is infeasible relatively to time constraints, then the chart represents the time infeasibility
in a similar way to what is depicted in Figure 6.2. For instance, in Figure 6.9, the support solution is time-infeasible
due to the insertion of T27 in Ellen’s schedule. Ellen’s schedule is then represented on two rows, with T27 at the
end of the first and T27’, a copy of T27, at the beginning of the second. These two rows show two portions of
Ellen’s schedule which are respectively backward-feasible and forward-feasible. On the first row, a vertical red line
on the left of T26 suggests that it is the backward-critical activity and shows why T27 cannot be shifted backward.
On the second row, a vertical red line on the right of T27’ indicates that it can not be shifted forward. By hovering
the mouse on this line, we can read that this is due to the upper bound of its availability time-window. Therefore,
the two schedule portions cannot be connected temporally.

86

• Below, is a horizontal panel 4 related to contrastive explanations. From left to right, top to bottom, it contains:
- a text area displaying the contrastive explanation text (“In the current solution, ...”);
- a “Return” button to go back to the definition of contrastive question;
- a “Save” button for saving the support solution displayed in 3 that available only if it this solution is feasible.
- a “What if?” button to start requesting scenario questions, which is available only if the support solution is

infeasible;
- a “How to?” button to start requesting counterfactual questions, which is also available only if the support

solution is infeasible.
Note that the “Save” button is darker than the other buttons. It means that the button is unavailable which makes
sense since the support solution presented here is infeasible (relatively to the current instance).

3

4

Figure 6.9: GUI “Solution explanation” view - part 2: presenting contrastive explanations.

Suppose that end-users decide to request scenario questions by clicking on “What if?”. Then, the view expands again
as shown in Figure 6.10 with three new panels.

• A first panel 5 can be used to edit the data about the employees.
• A second panel 6 can be used to edit the data about the tasks (e.g. changing the upper bound of the availability

time-window of T27 from 03:00PM to 04:37PM as highlighted in blue).
Thus, panels 5 and 6 allow end-users to define a relaxed instance of the current instance.

• A third panel 7 relates to the scenario question. It consists of:
- a text area displaying the scenario question, which summarizes especially the changes applied to the current

instance;
- a “Submit” button to request a scenario explanation answering the question;
- a “Reset” button to set any instance parameters back to its value in the current instance;
- a “Return” button to come back to the contrastive explanation part (see Figure 6.9).

After submitting a scenario question, an explanation is generated according to the method detailed in Section 5.4.
The view gets expanded again in order to display the explanation as shown in Figure 6.11. The structure of this scenario
explanation part is similar to the one of contrastive explanation (see Figure 6.9): panels 8 and 9 play similar roles as
panels 3 and 4 . However, there are two buttons in 9 , not four as in 4 :

- a “Ok” button to to come back to the contrastive explanation part (see Figure 6.9);
- a “Save” button for saving the scenario support solution, displayed in 8 , along with the relaxed instance; this button

is available only if it this support solution is feasible.
Note that the “Save” button is again unavailable which makes sense since the (scenario) support solution presented here
is infeasible (relatively to the relaxed instance).

87

5

6

7

Figure 6.10: GUI “Solution explanation” view - part 3: defining scenario questions.

8

9

Figure 6.11: GUI “Solution explanation” view - part 4: presenting scenario explanations.

88

Suppose that end-users decide to come back to the contrastive explanation part shown in Figure 6.9 by clicking on
“Ok”. Suppose in addition that end-users decide this time to request counterfactual questions by clicking on “How to?”.
In the current state of the GUI prototype, there is no panels allowing end-users to define what instance parameters they
allow to alter and by how much before asking their counterfactual questions. By default, the allowed alterations are in line
with the assumptions presented in Subsection 5.5.1: alterations are exclusively allowed on task availability time-window
bounds and task durations, and are limited to with “reasonable bounds”.

As a consequence, after clicking on “How to?”, the view expands as shown in Figure 6.12 with two panels related
to the counterfactual explanation. The structure of this counterfactual explanation part is similar to the one of scenario
explanation (see Figure 6.11): panels 10 and 11 play similar roles as panels 8 and 9 . Especially, the two buttons “Ok”
and “Save” in 11 play similar roles as the one in panel 9 . Note that the “Save” button is here available which makes
sense since the (counterfactual) support solution presented here is feasible (relatively to the relaxed instance).

10

11

Figure 6.12: GUI “Solution explanation” view - part 5: presenting counterfactual explanations. In order to obtain
the counterfactual explanation text displayed in the screen capture, the underlying counterfactual transformation model
constraint has been constrained to alter at most two parameters among the task availability time-window bounds and the
task durations.

6.3.3 Comparing instances and solutions in the history
While using the “Solution explanation” view, end-users may decide to save some of the feasible solutions presented

within the explanations they obtain with the explanation system. In the case of scenario and counterfactual explanations,
instances related to the saved solutions are also saved. After obtaining enough explanations about the current solution,
end-users may be interested in comparing either instances or solutions they have saved. “Instances comparison” and
”Solutions comparison” views are precisely designed for this purpose.

Figure 6.13 shows the “Instances comparison” view which allows to compare two instances stored in the history. The
main content of this view is organized in two columns, each one corresponding to a different instance.

• The left column 1 is associated with the current instance, which is “instance_demo.1” in the screen capture.
• The right column 2 is associated with another instance, which is “instance_demo.2” in the screen capture. This

other instance can be selected from the history thanks to a drop-down list 2a .
These two instances are compared: first the data related to the employees and then the ones related to the tasks. If the
same parameter takes different values between the two instances, it is highlighted in blue, in the data tables of the other
instance. For instance, in the screen capture, the upper bound of the availability time-window of task 8 is highlighted in
blue because its value in “instance_demo.1” is 4:40PM while it is 5:24PM in “instance_demo.2”.

89

1 2

2a

Figure 6.13: GUI “Instances comparison” view.

Figure 6.14 corresponds to the view for comparing two solutions of the history, both solutions being feasible with
respect to the current instance. As in the view for comparing two instances, the main content is organized in two columns.
Each column corresponds to a different solution.

• The left column 1 is associated with the current solution, which is “solution_demo.1.1” in the screen capture.
• The right column 2 is associated with another solution, which is “solution_demo.1.2” in the screen capture. This

other solution can be selected from the history thanks to a drop-down list 2a .
Various aspects about the two solutions are presented in order to compare the two solutions, from top to bottom:
- the maps of employee routes (e.g. Ellen’s route in “solution_demo.1.2” has an intersection that her route in

“solution_demo.1.1” has not);
- the Gantt charts of the employee schedules (e.g. Ellen’s schedule “solution_demo.1.2” contains all the tasks of her

schedule “solution_demo.1.1”, plus T27, and it is ordered in a different way);
- the values of the objective functions (e.g. the total working time and total traveling time of “solution_demo.1.2”

are greater by respectively 50min and 28min than the ones of “solution_demo.1.1”).

6.4 Conclusion

In this chapter, we described the design of an explanation system i.e. a system for structuring the interactions between
on one hand end-users and on the ohter the methods for generating contrastive, scenario and counterfactual explanation
texts, presented in Chapter 5. This system uses a history i.e. a set of instances, each instance being mapped with
solutions that are feasible with respect to it. End-users provide the explanation system with an instance and a feasible
solution that they obtained thanks a solving system applied to this instance. This instance-solution pair initializes the
history. End-users can then request explanations about the solutions stored in this history. If the support solutions involved
in the explanations they obtained from the system are feasible, they can decide to save these solutions, along with their
corresponding instances, in the history and expand it. Thus, the explanation system can not only be employed by end-users
to obtain explanations about solutions, but also to explore, step by step, the sets of relaxed instances and neighboring
feasible solutions.

We also presented a Graphical User Interface (GUI) integrating this abstract explanation system. Such a GUI helps
using the system in a user-friendly manner. It contains various views. Among others, one view consists essentially in
interfacing the explanation system by allowing end-users to request explanations of various types. Two other views allow
end-users to compare the parameters of two different instances stored in the history and to compare the parameters of two
solutions that are feasible with respect to the same instance also stored in the history.

90

1 2

2a

Figure 6.14: GUI “Solutions comparison” view.

91

92

Chapter 7 Conclusion and perspectives
7.1 Conclusion

This thesis focused on the development of an original framework to provide explanations in relation to a Combinatorial
Optimization (CO) problem: the Workforce Scheduling and Routing Problem (WSRP). Given a set of mobile employees
and a set of geographically dispersed tasks, this problem consists in building and assigning to each employee a planning,
i.e. a route-schedule pair which defines the tasks that they should perform, in what order and at what times, over a
certain horizon. The objective is to design a family of plannings accommodating as much work as possible, with minimum
traveling cost, while satisfying a set of constraints.

Chapter 2 laid the groundwork of this thesis by emphasizing the interdisciplinary nature of the research related to
explanations. We explored how explanations are a research topic not only in computer science but first and foremost in
social sciences. Our exploration revealed the link between explanations and conversations, highlighting the importance that
we, explanation designers, adhere to the cooperative principle by following the maxims of quality, quantity, relation, and
manner when formulating the content of our explanations. Moreover, we noticed the inherent selectivity and the prevalent
contrastive nature of explanations. This primary understanding of explanation from the perspective of social sciences
served us as a basis for our subsequent work. Transitioning our review into the general field of artificial intelligence (AI),
we inspected key characteristics of explanation methods in AI, which allowed us to position our work relative to this vast
literature: the target audience of our explanations consists of the end-users of an optimization system solving our WSRP
use case; our explanations adopt a local scope by focusing on a specific solution of a WSRP instance; they can be of three
different types namely contrastive, scenario, or counterfactual; they are conveyed in the form of texts, constructed using
templates; and they are triggered by questions formulated thanks to other template texts We also identified the need for
methods to explain solutions within the domain of Operations Research (OR) and more specifically within CO.

Chapter 3 specified the characteristics of the WSRP use case for which we developed our explanation framework.
We gave formal definitions and modeled this use case as a bi-objective Integer Linear Programming (ILP) problem. We
also introduced the concept of solution transformations, along with their corresponding solution neighborhoods. We
listed various families of solution transformations including transformations about inserting a task in an employee planning,
exchanging a task in an employee planning with another task or reordering tasks within an employee planning. We classified
transformations into three kinds depending on the structure of their corresponding neighborhoods, namely constant-size,
polynomial-size and exponential-size transformations. Solution transformations and neighborhoods together play a crucial
role in our endeavor to model, compute and generate explanations.

In Chapter 4, we turned our attention to the modeling of explanations. We detailed our original framework guiding
end-user observations about WSRP solutions to questions and, ultimately, to explanations. Observations are assumed to
be inherently linked to solution transformations and neighborhoods. The three types of explanations, contrastive, scenario
and counterfactual, are handled by our framework with three corresponding types of questions, “why not”, “what if”
and “how to”. Questions are interpreted in CO terms, possibly involving instance relaxations, and induce mathematical
programs bringing into play solution neighborhoods. Explanations are then mathematically defined based on the feasibility
of the induced programs. We ended this chapter by acknowledging the challenges posed by the mathematical nature of
the defined explanations, which may not be intelligible for individuals who are not experts in combinatorial optimization,
and the need to translate them into texts. So that the practical computation and narration of explanations remained a
key step, setting the stage for Chapter 5.

Chapter 5 described our approach to generating explanation texts in response to end-user questions. Regardless of the
type of the question given as input, our method comprises two main stages: identifying relevant mathematical content,
so-called support content, and constructing explanation texts using templates filled with information extracted from this
content. We detailed the algorithms employed to compute the support content, with an emphasis on efficiency. While
numerical studies demonstrated the feasibility of our approach, we acknowledged potential computational challenges when
utilizing ILP-based methods.

The achievement of our research is presented in Chapter 6 where we introduced a comprehensive explanation system
designed to facilitate interactions between end-users and our explanation generation methods. This system leverages a
history of instances and their associated solutions to not only provide end-users with explanations but also enable them
to explore incrementally the spaces of neighboring feasible solutions and relaxed instances. A Graphical User Interface
(GUI) integrates this system enabling end-users not only to request explanations but also compare different instances and
solutions.

93

7.2 Perspectives
The work presented in this manuscript raises several issues and research perspectives. We describe in what follows

some research directions that may be worth investigating.

• Adapting our approach to other WSRP definitions. In Chapter 3, we specified the characteristics of our WSRP
use case, including the instance data, the lexicographic bi-objective function to optimize and the constraints to
satisfy. However, the definition of the WSRP is not unique. Then, a first interesting research perspective to explore
could be to investigate whether our methods for both modeling and generating explanations remain valid when
applied to other variants of the WSRP. If they do not, it would be valuable to determine how they can be modified
to accommodate these other definitions.
In collaboration with Dr. Martin Aleksandrov, we actually started to explore this research perspective during an
international research visit in June-July 2023, at Freie Universität, Berlin. The purpose of this visit was to study
the integration of social considerations into our work on explanation methods for CO problems. Specifically, given
Dr. Martin Aleksandrov’s leadership in a research project titled "Fairness and Efficiency for Emerging Vehicle
Routing Problems," and our focus on the CO problem of WSRP, we aimed at incorporating fairness considerations
into our WSRP use case and at anticipating the consequences on our explanation methods. Drawing inspiration
from research on fair Vehicle Routing Problems (VRP) (see e.g. [MHV18] for a comprehensive review and [SV13]
for an example of fair VRP), we essentially integrated fairness into our WSRP formulation by replacing the first
objective seeking to maximize the total working time by another one seeking to maximize the minimum individual
working time. We concluded that such a modification in our WSRP definition would not affect the core concepts
involved in our framework modeling explanations. However, our methods for generating explanations would require
some adaptations or extensions. For instance, it would be relevant to develop new preliminary checks, including
assessments anticipating whether the solution transformation associated with the end-user question would lead to a
deterioration in solution quality.
Moreover, various other complicating features have been considered in the literature when modeling the WSRP. For
example, [GM13] considers task precedence constraints, [BR08] workforce synchronization constraints and [CTH16]
experience-based service times in the context of a multi-day horizon. Analyzing how to adapt our methods in order to
generate explanation for these other variants of the problem, which involve different instance data, non-lexicographic
multi-objective function and new constraints, represents an intriguing research perspective.

• Transposing our approach to other CO problems. An essential research perspective to consider would be to
assess the level of genericity of our approach by investigating its potential applicability to other CO problems. Even
if our approach cannot be straightforwardly applied to any other CO problem, we have reasons to believe that it can
be transposed to a variety of CO problems
Indeed, firstly, our approach for modeling explanations hinges on solution neighborhoods, a concept rooted in Local
Search. Many CO problems have been extensively studied within the local search literature, leading to the creation of
specific solution neighborhoods for each of these problems. These neighborhoods may be leveraged to build end-user
observations. Moreover, while the solutions neighborhoods used as part of heuristic solving algorithms are usually
small enough to be explored, expanding them into larger neighborhoods may also be relevant in the context of ex-
plaining solutions. As demonstrated in this thesis focusing on a WSRP use case, the exponential-size neighborhoods
expanding polynomial-size ones also align with natural end-user observations. Thus, expansions of neighborhoods
found in local search literature may also be leveraged to build end-user observations, resulting in a large diversity of
observations and then questions.
Secondly, the conceptual framework developed in Chapter 4 which guides the progression from an end-user obser-
vation to a question and ultimately to an explanation remains relatively abstract, even though this thesis focuses
on a WSRP use case. The key concepts involved in this framework, such as observation-based questions, decision-
problem interpreted questions, foil models, and others, are independent from the WSRP and could be applied to
other problems.
However, since the algorithms developed for generating explanation texts rely on neighborhoods, which depend on the
nature of the CO problem, we expect that research work would be needed in order to adapt our explanation-generation
techniques to another CO problem.

• Considering end-user questions that do not satisfy the assumptions underlying our approaches. In Chapter 4,
we introduced the assumptions on which we underpin our approach for modeling explanations in our CO context.
Especially, we assume that end-user questions are based on observations which are inherently linked to solution
transformations and neighborhoods. However, it is worth noting that not all interesting questions about WSRP

94

solutions align with these assumptions. For example, consider the question “Why is Ellen working more than
Carlotta?” which is a legitimate question that a planner might ask. Its corresponding observation is “Ellen is working
more than Carlotta”. It is challenging to us to identify a transformation associated with this observation. In any case,
the transformation linked to this question could potentially involve a very large number of elementary transformations,
as it would require modifying the schedules of two or more employees and considering a substantial set, if not all, of
the tasks. Consequently, applying it would demand a significant computational effort. Furthermore, we will have to
identify the relevant explanatory information to provide in the explanation text provided to the end-users.

• Evaluating the benefits of our approach for the end-users. As outlined in Chapter 1, one of the key motivations
behind this thesis is leveraging explanations as a way to hold the trust of decision-makers in the optimization-based
systems they use and the solutions they obtained from them. Thus, in our opinion, a crucial research topic to study
is evaluating the actual benefits of our explanations for these end-users.
In the last phase of this thesis, we undertook an effort to investigate this matter. In [VL21], the authors identify
two main ways to evaluate explanation methods: i) the “objective evaluations” which correspond to research studies
employing objective metrics and automated approaches, and ii) the “human-centered evaluations” which involve
end-users and exploit their feedback. Drawing inspiration from the field of Explainable Artificial Intelligence (XAI),
exemplified by works such as [YJ95, KKM+21], we developed a human-centered evaluation with the objective of
assessing whether having access to explanations about the solutions obtained from an optimization system would
influence the trust that end-users have in these solutions.
Practically, akin to the approach adopted by [KKM+21] in the context of AI Planning, we designed a questionnaire
and harnessed our GUI, presented in Chapter 6, to conduct our evaluation. Our GUI was populated with three
different instance-solution pairs - where the three solutions had been obtained by solving heuristically the three
instances. Participants were tasked with adopting the role of planners, assuming the responsibility for gauging the
relevance of WSRP solutions and for deciding the application of these solutions to define the plannings of their
hypothetical mobile employee colleagues. Without knowing it, the participants were divided into three groups. All
groups were given access to the GUI in order to inspect the solutions. Two groups also had the option to request
explanations if desired. Within these two groups, one could receive only textual explanations while the other was
provided with both textual explanations and accompanying graphics. Following each solution inspection, participants
were asked to assess their confidence in the relevance of the presented solution. For the assessment, participants
were asked to rate their confidence on a Likert scale, from 1 “very unconfident” to 5 “very confident”, similarly to
the approach in [YJ95].
In order to test our survey, we formed a panel of participants made of 38 M.Sc. students. We imagined measuring
significant variations between rates given by participants of the different groups: participants who were given access
to explanations were expected to show a higher level of confidence than the ones who were not. However, the
results of this survey did not yield conclusive findings: distribution of rates were overlapping. From these results, we
deduced two main weaknesses in our evaluation approach. First, this alpha test survey lacked rigor: more relevant
results could likely be obtained with a panel comprising actual users of optimization systems who could take the time
to respond sincerely to the survey questions. Second, trust is a multifaceted sentiment influenced by knowledge,
beliefs, emotions, and other aspects of experience. Therefore, attempting to measure it through a single Likert scale
may prove futile. We could maybe draw inspirations from works such as [HMKL18] which propose measuring trust
using multiple Likert scales covering different dimensions of trust.
In a nutshell, there is still work to be done in the design and implementation of a relevant and effective approach
for evaluating the benefits of our explanation methods for end-users.

• Leveraging Natural Language Generation techniques to produce explanation texts. In Chapter 5, we presented
our method for generating explanation texts. After identifying relevant mathematical content, referred to as support
content, explanations texts are built thanks to templates populated with information extracted from this support
content. While we endeavored to streamline the process by minimizing the number of predefined template texts used
for generating a diverse range of potential explanations, the preparatory work remains time-consuming. Moreover,
because we concatenate predefined template texts pieces to compose final explanation texts, the resulting explanation
texts may occasionally come across as unnatural and cumbersome.
To address these issues, we believe that Natural Language Generation (NLG) techniques could be leveraged. There
exist works aiming at rationalizing explanation text generation, in the broader context of XAI, incorporating NLG
techniques, among others [BPO19]. For the authors, the explanation generation process can be conceptualized as
a sequence of three main phases: i) content extraction from an instantiated AI model, ii) semantic representation
of this content, and finally, iii) text generation using NLG techniques. While content extraction is specific to each
AI model, the two other components are common to all AI models, enabling a shared framework. Consequently, the

95

authors’ ambition is to build a semantic representation that is independent of the AI model, allowing any specialist in
an XAI model to represent their explanations without needing to delve into the textual aspects. [Baa22] represents
an initial endeavor towards achieving this goal, but there remains work to be done in order to devise a comprehensive
proposal. Nevertheless, once such a framework has matured, it could potentially relieve us of the need to manage
the textual aspect of our explanations.

To conclude this manuscript, our work represents a step forward in the development and practical application of
explanation methods in CO. It opens doors to further research, innovation, and real-world applications in the domain of
decision support systems.

96

Bibliography
[Baa22] Ismaïl Baaj. Explainability of possibilistic and fuzzy rule-based systems. Theses, Sorbonne Université,

January 2022.

[BADRDS+20] Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot, Siham Tabik, Alberto
Barbado, Salvador Garcia, Sergio Gil-Lopez, Daniel Molina, Richard Benjamins, Raja Chatila, and Francisco
Herrera. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges
toward responsible AI. Information fusion, 58:82–115, 2020.

[BGG21] Bart Bogaerts, Emilio Gamba, and Tias Guns. A framework for step-wise explaining how to solve Constraint
Satisfaction Problems. Artificial Intelligence, 300:103550, 2021.

[BPO19] Ismaïl Baaj, Jean-Philippe Poli, and Wassila Ouerdane. Some insights towards a unified semantic rep-
resentation of explanation for eXplainable artificial intelligence. In Proceedings of the 1st Workshop on
Interactive Natural Language Technology for Explainable Artificial Intelligence (NL4XAI 2019), pages 14–
19. Association for Computational Linguistics, 2019.

[BR08] David Bredström and Mikael Rönnqvist. Combined vehicle routing and scheduling with temporal prece-
dence and synchronization constraints. European Journal of Operational Research, 191(1):19–31, 2008.

[CCK+19] Michael Cashmore, Anna Collins, Benjamin Krarup, Senka Krivic, Daniele Magazzeni, and David Smith.
Towards Explainable AI Planning as a service. In International Conference on Automated Planning and
Scheduling second workshop on Explainable Planning, 2019.

[CJ06] Hadrien Cambazard and Narendra Jussien. Identifying and exploiting problem structures using explanation-
based constraint programming. Constraints, 11:295–313, 2006.

[ČKL+20] Kristijonas Čyras, Amin Karamlou, Myles Lee, Dimitrios Letsios, Ruth Misener, and Francesca Toni.
AI-assisted schedule explainer for nurse rostering. In Proceedings of the 19th International Conference
on Autonomous Agents and MultiAgent Systems, page 2101–2103, Richland, SC, 2020. International
Foundation for Autonomous Agents and Multiagent Systems.

[ČLMT19] Kristijonas Čyras, Dimitrios Letsios, Ruth Misener, and Francesca Toni. Argumentation for Explainable
Scheduling. In Proceedings of the thirty-third Association for the Advancement of Artificial Intelligence
Conference on Artificial Intelligence, pages 2752–2759. AAAI Press, 2019.

[CSK20] Tathagata Chakraborti, Sarath Sreedharan, and Subbarao Kambhampati. The emerging landscape of
Explainable AI Planning and Decision Making. In Proceedings of the twenty-ninth International Joint
Conference on Artificial Intelligence, pages 4803–4811. IJCAI Organization, 2020.

[CSLSQ16] José Arturo Castillo-Salazar, Dario Landa-Silva, and Rong Qu. Workforce Scheduling and Routing Prob-
lems: literature survey and computational study. Annals of Operations Research, 239:39–67, 2016.

[CTH16] Xi Chen, Barrett W. Thomas, and Mike Hewitt. The Technician Routing Problem with experience-based
service times. Omega, 61:49–61, 2016.

[CTJ89] Balakrishnan Chandrasekaran, Michael Tanner, and John Josephson. Explaining control strategies in
problem solving. IEEE Expert, 4:9–15, 1989.

[dK86] Johan de Kleer. Problem solving with the ATMS. Artificial Intelligence, 28:197–224, 1986.

[Dun95] Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning,
logic programming and n-person games. Artificial intelligence, 77(2):321–357, 1995.

[DVK17] Finale Doshi-Velez and Been Kim. Towards a rigorous science of Interpretable Machine Learning. arXiv:
Machine Learning, 2017.

[FSPC18] James Forrest, Somayajulu Sripada, Wei Pang, and George Coghill. Towards making NLG a voice for
interpretable machine learning. In Proceedings of the 11th International Conference on Natural Language
Generation, pages 177–182, Tilburg University, The Netherlands, nov 2018. Association for Computational
Linguistics.

97

[GA19] David Gunning and David Aha. DARPA’s Explainable Artificial Intelligence (XAI) program. AI Magazine,
40:44–58, 2019.

[GDP16] Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection
of natural persons with regard to the processing of personal data and on the free movement of such data,
and repealing Directive 95/46/EC (General Data Protection Regulation), 2016.

[Gin93] Matthew Ginsberg. Dynamic backtracking. Journal of Artificial Intelligence Research, 1:25–46, 1993.

[GM13] Asvin Goel and Frank Meisel. Workforce routing and scheduling for electricity network maintenance with
downtime minimization. European Journal of Operational Research, 231(1):210–228, 2013.

[GMR+18] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Giannotti, and Dino Pedreschi.
A survey of methods for explaining black box models. ACM Computing Surveys, 51:1–42, 2018.

[Gri75] H. P. Grice. Logic and conversation. In Peter Cole and Jerry L. Morgan, editors, Syntax and Semantics:
Vol. 3: Speech Acts, pages 41–58. Academic Press, New York, 1975.

[Hil90] Denis Hilton. Conversational processes and causal explanation. Psychological Bulletin, 107:65–81, 01
1990.

[HMKL18] Robert Hoffman, Shane T. Mueller, Gary Klein, and Jordan Litman. Metrics for explainable ai: Challenges
and prospects. ArXiv, abs/1812.04608, 2018.

[JO01] Narendra Jussien and Samir Ouis. User-friendly explanations for Constraint Programming. In Proceedings
of the eleventh Workshop on Logic Programming Environments, 2001.

[Jun04] Ulrich Junker. Quickxplain: Preferred explanations and relaxations for over-constrained problems. In
Proceedings of the ninetieth Association for the Advancement of Artificial Intelligence Conference on
Artificial Intelligence, page 167–172. AAAI Press, 2004.

[KKM+21] Benjamin Krarup, Senka Krivic, Daniele Magazzeni, Derek Long, Michael Cashmore, and David E. Smith.
Contrastive explanations of plans through model restrictions, 2021.

[KSB21] Anton Korikov, Alexander Shleyfman, and Christopher Beck. Counterfactual explanations for optimization-
based decisions in the context of the GDPR. In Proceedings of the thirtieth International Joint Conference
on Artificial Intelligence, pages 4097–4103. IJCAI Organization, 2021.

[Lew73] David Lewis. Counterfactuals. Cambridge, MA, USA, Blackwell, 1973.

[LGM20] Qingzi Vera Liao, Daniel Gruen, and Sarah Miller. Questioning the AI: Informing design practices for
Explainable AI User Experiences. In Proceedings of the 2020 Conference on Human Factors in Computing
Systems, page 1 – 15. Association for Computing Machinery, 2020.

[LGMO22] Mathieu Lerouge, Céline Gicquel, Vincent Mousseau, and Wassila Ouerdane. Generating user-
centered contrastive explanations for the Workforce Scheduling and Routing Problem. Working paper
https://hal.archives-ouvertes.fr/hal-03795653, 2022.

[LGMO23] Mathieu Lerouge, Céline Gicquel, Vincent Mousseau, and Wassila Ouerdane. Counterfactual explanations
for workforce scheduling and routing problems. In Proceedings of the 12th International Conference on
Operations Research and Enterprise Systems (ICORES), pages 50–61. SCITEPRESS, 2023.

[Lin20] Alan Lindsay. Using generic subproblems for understanding and answering queries in XAIP. In Proceedings
of the 2020 International Conference on Automated Planning and Scheduling workshop on Knowledge
Engineering for Planning and Scheduling, 2020.

[Lip90] Peter Lipton. Contrastive explanation. Royal Institute of Philosophy Supplement, 27:247–266, 1990.

[LKS18] Jeremy Ludwig, Annaka Kalton, and Richard Stottler. Explaining complex scheduling decisions. In Pro-
ceedings of the 2018 Association of Computing Machinery conference on Intelligent User Interfaces, volume
2068, 2018.

98

[MHV18] P. Matl, R. F. Hartl, and T. Vidal. Workload equity in vehicle routing problems: A survey and analysis.
Transportation Science, 52(2):239–260, 2018.

[Mil19] Tim Miller. Explanation in artificial intelligence: Insights from the social sciences. Artificial Intelligence,
267:1–38, 2019.

[Mil21] Tim Miller. Contrastive explanation: a structural-model approach. The Knowledge Engineering Review,
36:e14, 2021.

[MSV19] Federico Mosquera, Pieter Smet, and Greet Vanden Berghe. Flexible home care scheduling. Omega,
83:80–95, 2019.

[MZR21] Sina Mohseni, Niloofar Zarei, and Eric D. Ragan. A multidisciplinary survey and framework for design and
evaluation of Explainable AI systems. Associtation for Computing Machinery Transactions on Interactive
Intellent Systems, 11(3–4), 2021.

[POP21] Jean-Philippe Poli, Wassila Ouerdane, and Régis Pierrard. Generation of textual explanations in XAI: the
case of semantic annotation. In Proceedings of the 2021 Institute of Electrical and Electronics Engineers
International Conference on Fuzzy Systems (FUZZ-IEEE), pages 1–6, 2021.

[Sav92] Martin Savelsbergh. The vehicle routing problem with time windows: Minimizing route duration. INFORMS
Journal on Computing, 4:146–154, 1992.

[SF96] Mohammed Sqalli and Eugene Freuder. Inference-based Constraint Satisfaction supports explanation.
In Proceedings of the Association for the Advancement of Artificial Intelligence Conference on Artificial
Intelligence, volume 1, pages 318–325. AAAI Press, 1996.

[SS87] William Swartout and Stephen Smoliar. On making expert systems more like experts. Expert Systems,
4(3):196–208, 1987.

[SSK18] Sarath Sreedharan, Siddharth Srivastava, and Subbarao Kambhampati. Hierarchical expertise level mod-
eling for user specific contrastive explanations. In Proceedings of the twenty-seventh International Joint
Conference on Artificial Intelligence, pages 4829–4836. IJCAI Organization, 2018.

[SV13] Silvia Schwarze and Stefan Voß. Improved load balancing and resource utilization for the skill vehicle
routing problem. Optimization Letters, 7(8):1805–1823, 2013.

[SVZ14] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks: Visualising
image classification models and saliency maps. In Proceedings of the 2nd International Conference on
Learning Representations (ICLR), 2014.

[VDG19] Gabriel Volte, Chloé Desdouits, and Rodolphe Giroudeau. The Workforce Routing and Scheduling Problem:
solving real-world instances. In Proceedings of the ninth International Network Optimization Conference,
pages 60–65. OpenProceedings, 2019.

[VL21] Giulia Vilone and Luca Longo. Notions of explainability and evaluation approaches for explainable artificial
intelligence. Information Fusion, 76:89–106, 2021.

[WMR18] Sandra Wachter, Brent Mittelstadt, and Chris Russell. Counterfactual explanations without opening the
black box: Automated decisions and the GDPR. Harvard Journal of Law & Technology, 31, 2018.

[WT92] Michael Wick and William Thompson. Reconstructive Expert System explanation. Artificial Intelligence,
54:33–70, 1992.

[YJ95] L. Richard Ye and Paul E. Johnson. The impact of explanation facilities on user acceptance of expert
systems advice. MIS Quarterly, 19(2):157–172, 1995.

[ZF14] Matthew Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In European
conference on computer vision, pages 818–833, 2014.

99

100

Appendix A Illustrative example
A.1 Instance

Employee Name Skill level Location Time-window
i skei [lbei, ubei]

in E in N⋆ as (lat., long.) in deg. as time range as integer range

1 Ellen 2 (47.773, 16.193) [8:00AM, 6:00PM] [480, 1080]
2 Alex 3 (47.598, 15.785) [9:00AM, 6:00PM] [540, 1080]
3 Adam 2 (48.188, 14.862) [8:00AM, 6:00PM] [480, 1080]
4 Fabian 1 (48.069, 14.485) [8:00AM, 6:00PM] [480, 1080]
5 Carlotta 1 (47.463, 15.351) [8:00AM, 6:00PM] [480, 1080]

Task Skill level Location Duration Time-window
j sktj dtj [lbtj , ubtj]

in T in N⋆ as (lat., long.) in deg. in min. as time range as integer range

1 1 (48.129, 15.754) 40 [8:00AM, 6:00PM] [480, 1080]
2 1 (47.240, 15.430) 40 [2:00PM, 6:00PM] [840, 1080]
3 1 (47.803, 15.348) 40 [11:00AM, 6:00PM] [660, 1080]
4 1 (47.913, 15.539) 30 [2:00PM, 6:00PM] [840, 1080]
5 1 (47.240, 14.639) 40 [8:00AM, 12:00PM] [480, 720]
6 3 (47.719, 15.856) 40 [8:00AM, 6:00PM] [480, 1080]
7 2 (47.691, 15.979) 30 [8:45AM, 12:00PM] [525, 720]
8 1 (47.904, 15.988) 40 [8:00AM, 6:00PM] [480, 1080]
9 1 (48.252, 15.159) 40 [9:00AM, 12:00PM] [540, 720]
10 2 (48.233, 15.094) 80 [9:00AM, 6:00PM] [540, 1080]
11 2 (47.879, 14.348) 40 [8:00AM, 6:00PM] [480, 1080]
12 2 (47.151, 15.559) 40 [8:00AM, 6:00PM] [480, 1080]
13 1 (48.073, 14.500) 30 [8:00AM, 6:00PM] [480, 1080]
14 1 (47.509, 15.979) 50 [8:00AM, 6:00PM] [480, 1080]
15 2 (48.182, 15.480) 25 [8:00AM, 2:00PM] [480, 840]
16 1 (47.307, 16.030) 30 [8:00AM, 6:00PM] [480, 1080]
17 1 (48.174, 15.768) 40 [12:30PM, 4:00PM] [750, 960]
18 1 (47.696, 14.639) 40 [8:00AM, 6:00PM] [480, 1080]
19 2 (47.466, 15.662) 40 [8:00AM, 6:00PM] [480, 1080]
20 2 (47.624, 15.928) 30 [8:00AM, 6:00PM] [480, 1080]
21 1 (47.893, 15.139) 45 [8:00AM, 6:00PM] [480, 1080]
22 1 (47.799, 15.814) 30 [3:00PM, 6:00PM] [900, 1080]
23 1 (47.430, 15.794) 30 [10:00AM, 3:00PM] [600, 900]
24 2 (48.178, 15.144) 40 [2:00PM, 3:00PM] [840, 900]
25 1 (47.382, 16.094) 40 [8:00AM, 1:00PM] [480, 780]
26 2 (47.809, 15.206) 40 [12:00PM, 6:00PM] [720, 1080]
27 2 (47.948, 15.950) 50 [8:00AM, 3:00PM] [480, 900]
28 3 (47.160, 15.991) 30 [8:00AM, 6:00PM] [480, 1080]
29 1 (47.829, 15.253) 40 [8:00AM, 1:00PM] [480, 780]
30 1 (47.646, 15.907) 40 [8:00AM, 12:00PM] [480, 720]
31 2 (47.399, 15.535) 40 [8:00AM, 4:00PM] [480, 960]

Table A.1: Description of the WSRP instance I on which is based the solution represented in Figure 3.1. The first
table describes the data about the set of employees E . Each employee i ∈ E is characterized by a skill level skei, a
departure and return location, and a time-window [lbei, ubei]. The second table describes the data about the tasks. Each
task j is described by a skill level sktj , a location, a duration dtj and a time-window [lbtj , ubtj]. It is assumed that
all the employees have the same traveling speed of 50km/h. Considering that the earth radius is 6731km, the traveling
time, in minutes, between two locations (lat1, long1) and (lat2, long2) are computed as follows: 6731×arccos(sin(lat1)×
sin(lat2)+cos(lat1)×cos(lat2)×cos(long2−long1))/50×60. See Subsection 3.2.1 for the definition of a WSRP instance.

101

A.2 Solution

Employee Planning
i (Ri, Ci)

1
R1= (d1, 7, 30, 3, 26, 1, 17, 8, r1)
C1 = (504, 525, 567, 662, 720, 840, 900, 1009, 1080)
≡ (08:05AM, 08:45AM, 09:27AM, 11:02AM, 12:00PM, 02:00PM, 03:00PM, 04:49PM, 06:00PM)

2
R2= (d2, 28, 16, 25, 14, 20, 6, 19, r2)
C2 = (540, 600, 653, 702, 822, 888, 933, 1019, 1080)
≡ (09:00AM, 10:00AM, 10:53AM, 11:42AM, 01:42PM, 02:48PM, 03:33PM, 04:59PM, 6:00PM)

3
R3= (d3, 11, 9, 10, 24, r3)
C3 = (480, 542, 670, 717, 840, 906)
≡ (08:00AM, 09:02AM, 11:10AM, 11:57AM, 02:00PM, 03:06PM)

4
R4= (d4, 13, 18, 21, 29, 4, 22, r4)
C4 = (480, 482, 564, 656, 738, 866, 925, 1080)
≡ (08:00AM, 08:02AM, 09:24AM, 10:56AM, 12:18PM, 02:26PM, 03:25PM, 06:00PM)

5
R5= (d5, 5, 23, 2, r5)
C5 = (529, 600, 840, 1009, 1080)
≡ (08:49AM, 10:00AM, 02:00PM, 04:49PM, 06:00PM)

Table A.2: Description of the solution S = ((Ri, Ci))i∈E represented in Figure 3.1. S is a feasible solution of the WSRP
instance given in Table A.1. Each employee i ∈ E is associated with a planning (Ri, Ci) made of: firstly, a route Ri,
which is a sequence of activities starting with the departure di of i (from their personal location), followed with the tasks
j ∈ T that i performs, and ending with the return ri of i (to their personal location); secondly, a schedule Ci, which is
a sequence of dates at which the corresponding activities of Ri start to be performed by i. See Subsection 3.2.1 for the
definition of a solution to a WSRP instance.

A.3 Time slacks

Employee Sequence of BTS Sequence of FTS
i

1 (5, 0, 3, 2, 0, 15, 28, 55, 55) (76, 56, 53, 53, 48, 33, 20, 0, 0)
2 (0, 0, 0, 7, 67, 67, 67, 75, 75) (45, 45, 45, 38, 8, 8, 8, 0, 0)
3 (0, 0, 0, 0, 0, 0) (10, 10, 10, 54, 20, 174)
4 (0, 0, 0, 0, 23, 26, 25, 25) (25, 25, 25, 25, 2, 0, 0, 0)
5 (49, 49, 141, 169, 169) (80, 80, 30, 0, 0)

Table A.3: Description of the sequences of Backward Time Slacks (BTS) and Forward Time Slacks (FTS), in minutes,
corresponding to the feasible solution S given in Table A.2. The mathematical formula used for computing BTS and FTS
are given in Subsection 3.3.1.

102

Appendix B ILP solution

Employee Binary decision variables
i Uijk

1
U1,d1,7 = U1,7,30 = U1,30,3 = U1,3,26 = U1,26,1

= U1,1,17 = U1,17,8 = U1,8,r1 = 1
U1jk = 0 for all other couples of activities (j, k)

2
U2,d2,28 = U2,28,16 = U2,16,25 = U2,25,14 = U2,14,20

= U2,20,6 = U2,6,19 = U2,19,r2 = 1
U2jk = 0 for all other couples of activities (j, k)

3 U3,d3,11 = U3,11,9 = U3,9,10 = U3,10,24 = U3,24,r3 = 1
U3jk = 0 for all other couples of activities (j, k)

4
U4,d4,13 = U4,13,18 = U4,18,21 = U4,21,29 = U4,29,14

= U4,14,22 = U4,22,r4 = 1
U4jk = 0 for all other couples of activities (j, k)

5 U5,d5,5 = U5,5,23 = U5,23,2 = U5,2,r5 = 1
U5jk = 0 for all other couples of activities (j, k)

Task Int. dec. var.
j Tj

1 840
2 1009
3 662
4 866
5 600
6 933
7 525
8 1009
9 670
10 717
11 542
12 0
13 482
14 822
15 0
16 653

Task Int. dec. var.
j Tj

17 900
18 564
19 1019
20 888
21 656
22 925
23 840
24 840
25 702
26 720
27 0
28 600
29 738
30 567
31 0

blank

Table B.1: Description of the (feasible) ILP-solution X = φ−1(S) associated with the (feasible) solution S given in
Table A.2. The first table gives the values of the binary decision variables (Uijk) and the second table gives the values of
the integer decision variables (Tj). X can be obtained from S by applying φ−1 described in Algorithm C.2. Conversely,
S can be obtained from X by applying φ described in Algorithm C.1. See Subsection 3.2.2 for the definition of the ILP
model (including the decision variables) and the bijection φ.

103

Appendix C Bijection

Algorithm C.1: Bijection from a feasible to ILP-
solution to a feasible solution

Input :
X = ((Tj), (Uijk)) a feasible ILP-solution

(w.r.t. an instance I)

1 S ← ()
2 for i ∈ E do
3 Ri ← ()
4 add di at the end of Ri

5 j ← di

6 k ← di

7 while k ̸= ri do
8 k ← activity after k in Ai

9 if k = j then
10 k ← activity after k in Ai

11 while Uijk ̸= 1 do
12 k ← activity after k in Ai

13 j ← k
14 add j at the end of Ri

15 Ci ← ()
16 add lbei at the end of Ci

17 j ← activity after di in Ri

18 while j ̸= ri do
19 add stj ← Tj at the end of Ci

20 j ← activity after j in Ri

21 add ubei at the end of Ci

22 add (Ri, Ci) to S

Output :
S a feasible solution

Algorithm C.2: Bijection from a feasible solution
to a feasible ILP-solution

Input :
S a feasible solution (w.r.t. an instance I)

1 X ← ()
2 for j ∈ T do
3 add Tj ← 0 to X
4 for i ∈ E do
5 for j ∈ Ai \ {ri} do
6 for k ∈ Ai \ {di, j} do
7 add Uijk ← 0 to X
8 for i ∈ E do
9 j ← activity after di in Ri

10 Ui,di,j ← 1 in X
11 k ← activity after j in Ri

12 while k ̸= ri do
13 Tk ← stk in X
14 Uijk ← 1 in X
15 j ← k
16 k ← index of the activity after k in Ri

17 Ui,j,ri
← 1 in X

Output :
X a feasible ILP-solution

104

Appendix D Synthèse en français
Cette thèse cherche à répondre à un défi lié à l’utilisation de systèmes d’aide à la décision basés sur de l’optimisation

combinatoire, à savoir, expliquer à des utilisateurs les solutions obtenues en sortie de ces systèmes. L’approche proposée
dans cette thèse pour répondre à ce défi est appliquéee au cas du problème de planification d’employés mobiles, en anglais
Workforce Scheduling and Routing Problem (WSRP). Le choix du WSRP est, entre autres, motivé par les besoins de
notre partenaire industriel, DecisionBrain, spécialisé dans le développement de systèmes d’aide à la décision basés sur de
l’optimisation combinatoire. En cherchant à expliquer les résultats obtenus en sortie de tels systèmes d’aide à la décision, ce
travail s’inscrit dans le domaine de l’Intelligence Artificielle explicable, Explainable Artificial Intelligence (XAI) et pose des
questions de recherche telles que la modélisation mathématique des explications en contexte d’optimisation combinatoire,
le calcul efficace des explications, et la communication des explications aux décideurs.

Le chapitre d’introduction de la thèse expose les difficultés rencontrées par les décideurs utilisant les systèmes d’aide à
la décision basés sur de l’optimisation combinatoire, notamment le manque de compréhension des concepts mathématiques
et des principes algorithmiques sous-jacents à ces systèmes, pouvant conduire à une perte de confiance et à un besoin en
explication de leurs parts.

Le chapitre 2 souligne la nature interdisciplinaire de la recherche sur les explications, qui se développe notamment dans
le cadre des sciences sociales et des sciences informatiques.

Le chapitre 3 formalise le WSRP en tant que programme linéaire en nombres entiers avec une fonction bi-objectif
lexicographique. Il introduit également différentes familles de transformations de solutions ainsi que leurs voisinages
associés.

Le chapitre 4 se penche sur la modélisation mathématique du processus d’explication en contexte d’optimisation
combinatoire, en introduisant un cadre original reliant les observations faites par les utilisateurs à propos de solutions
de WSRP à des questions, puis aux explications en réponse à ces questions. Cette modélisation exploite notamment les
familles de transformations de solutions et les voisinages associés, détaillés dans le chapitre 3. Trois types d’explications,
contrastives, scénarios et contrefactuelles, sont définis mathématiquement en fonction de la faisabilité de programmes
mathématiques, qui s’appuient sur le programme linéaire en nombres entiers bi-objectif lexicographique modélisant le
WSRP.

Le chapitre 5 présente une méthode de génération de textes explicatifs en réponse aux questions des utilisateurs.
Indépendamment du type de question posée et fournie en entrée, la méthode identifie un contenu mathématique pertinent,
appelé contenu support, pour construire des textes explicatifs à l’aide de modèles de texte préétablis. L’efficacité des
algorithmes utilisés est mise en évidence par des expériences numériques, bien que des défis computationnels potentiels
soient identifiés pour les méthodes basées sur la résolution de programmes linéaires en nombres entiers.

Le chapitre 6 introduit un système visant à structurer les interactions entre les utilisateurs finaux et les méthodes de
génération d’explications. Ce système utilise un historique d’instances et de solutions pour fournir des explications aux
utilisateurs et leur permet également d’explorer de manière incrémentielle les espaces de solutions et d’instances voisines.
Une interface graphique intègre ce système, permettant aux utilisateurs de demander des explications et de comparer
différentes instances et solutions de WSRP.

Les contributions principales de cette thèse résident dans la création d’un cadre pour le processus d’explication en
optimisation combinatoire, la génération efficace de textes explicatifs centrés sur l’utilisateur, et la conception d’un système
interactif permettant aux utilisateurs de poser des questions, obtenir des textes explicatifs et d’explorer des solutions et
instances du WSRP. La thèse souligne l’importance de l’explicabilité dans les systèmes d’aide à la décision basés sur de
l’optimisation combinatoire et ouvre la voie à de nouvelles recherches visant à étendre l’approche développée à d’autres
problèmes que le cas de WSRP étudié.

105

	List of Figures
	List of Tables
	List of Algorithms
	Notations
	Introduction
	Context and motivations
	Proposals and contributions
	Manuscript structure

	Literature related to explanations
	Introduction
	A few insights about explanations from social sciences
	Explanations in Artificial Intelligence
	Explanations in Operations Research
	Conclusion

	Background on the Workforce Scheduling and Routing Problem (WSRP)
	Introduction
	Definition of our WSRP use case
	General characteristics
	Integer Linear Programming (ILP) model

	Solution transformations and neighborhoods
	Preliminaries
	Elementary transformations
	Efficient assessment of elementary transformation feasibility
	Additional notions related to elementary inserting transformations

	Constant-size transformations
	Polynomial-size transformations
	Exponential-size transformations

	Conclusion

	New framework for modeling explanations
	Introduction
	End-user related steps - From observations to questions
	End-user observations about a solution
	End-user questions about a solution

	Mathematical steps - From questions to explanations
	Decision-problem interpreted questions
	Foil-model interpreted questions
	Explanations

	Conclusion

	Approach for generating explanation texts
	Introduction
	Typical expressions
	Generating contrastive explanation texts
	Preliminary checks
	Complete checks - identifying a support solution
	Complete checks - building an explanation text using the support solution
	Numerical experiments

	Generating scenario explanation texts
	Generating counterfactual explanation texts
	Identifying support relaxation-solution pair
	Building counterfactual explanation texts from support relaxation-solution pair
	Numerical experiments

	Conclusion

	Designing and implementing a system for presenting explanations to end-users
	Introduction
	Explanation system
	Design of the explanation system
	Usage example of the explanation system

	Graphic User Interface (GUI) prototype
	Elementary views of the GUI
	Requesting explanations about the current solution
	Comparing instances and solutions in the history

	Conclusion

	Conclusion and perspectives
	Conclusion
	Perspectives

	Illustrative example
	Instance
	Solution
	Time slacks

	ILP solution
	Bijection
	Synthèse en français

