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Introduction

Motivations

3 observations:

(1) Real-world situations modeled as Combinatorial
Optimization (CO) problems (e.g. workforce management);

(2) CO problems solved using optimization systems that are
developed by experts (e.g. DecisionBrain);

(3) Optimization systems are used as black boxes by non-expert
people to make decisions.

↪ End-users may experience a lack of trust and confidence.

Let see (1), (2) and (3) in our use case.
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Introduction

Use case - (1) CO problem

Workforce Scheduling and Routing Problem (WSRP):
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Introduction

Use case - (1) CO problem

Workforce Scheduling and Routing Problem (WSRP):

Routes Schedules
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Introduction

Our use case - (2) Optimization system

WSRP-solving system:
e.g DecisionBrain’s Dynamic Scheduler

Mathieu Lerouge ROADEF 2023 21 February 2023 5 / 22
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Planner:
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A problematic situation for a planner:
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↪ If no explanations, then lack of trust and confidence...
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Introduction

Our proposition

Tackling the lack of trust and confidence experienced by
non-expert end-users solving WSRP instances, by generating
explanations to help them better understand their solutions.
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Literature about explanations

Explanations in Artificial Intelligence

Literature on eXplainable Artificial Intelligence (XAI):
Works on explanations:

Many in Machine Learning [Barredo Arrieta et al., 2020].
Some in other AI fields including

- Expert Systems, [Wick and Thompson, 1992],
- Planning, e.g. [Chakraborti et al., 2020],
- Constraint Programming, e.g. [Junker, 2004].

Few ones in Combinatorial Optimization (CO),
e.g. [Korikov et al., 2021].

↪ Survey concepts about explanations in AI fields
other than CO and transpose them to CO.

[Barredo Arrieta et al., 2020] XAI: Concepts, taxonomies, opportunities and challenges toward responsible AI
[Wick and Thompson, 1992] Reconstructive Expert System explanation
[Chakraborti et al., 2020] The emerging landscape of explainable AI planning and decision making
[Junker, 2004] QuickXplain: preferred explanations and relaxations for over-constrained problems
[Korikov et al., 2021] Counterfactual Explanations for Optimization-Based Decisions in the Context of the GDPR
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Literature about explanations

Explanations in Artificial Intelligence

Some recurrent concepts in XAI methods (1/2):
Explanations are often:
● local, i.e. focusing on outputs generated by the AI system
[Wick and Thompson, 1992];
● expressed as texts using templates,

e.g. [Krarup et al., 2021];
● contrastive i.e. answering questions having the following
form [Lipton, 1990]:
“Why not that other result

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

alternative

instead of this current one
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

fact

?”

[Wick and Thompson, 1992] Reconstructive expert system explanation
[Krarup et al., 2021] Contrastive explanations of plans through model restrictions
[Lipton, 1990] Contrastive explanation
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Literature about explanations

Explanations in Artificial Intelligence

Some recurrent concepts in XAI methods (2/2):
Explanations are often:
● scenario, i.e. describing how changes in inputs data or in
model parameters [...] affect the outputs
[Mohseni et al., 2021]
↪ ≃ answering “What if ... ? Would it be ... ?” questions;
● counterfactual, i.e. presenting alterations in inputs data
that would have resulted in a different outputs, such as an
end-user-specified outputs [Wachter et al., 2018]
↪ ≃ answering “How to ... ?” questions.

[Mohseni et al., 2021] A multidisciplinary survey and framework for design and evaluation of XAI systems
[Wachter et al., 2018] Counterfactual explanations w/o opening the black box: automated decisions and the GDPR
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Literature about explanations

Our proposition (with more details)

Tackling the lack of trust and confidence experienced by
non-expert end-users solving WSRP instances, by generating
explanations to help them better understand their solutions.

Generated explanations are:
- focusing on a given WSRP solution,
- expressed as texts using templates,
- contrastive (“Why not ...?”), scenario (“What if ...?”) or
counterfactual (“How to ...?”).
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Generating explanations

Observations about a solution

List of possible observations:
We identify 16 possible observations based on templates,
about various desired changes in the solution:

adding a task in an employee route;
e.g. “⟨employee i⟩ is not performing ⟨task j⟩ ...

- ... just after ⟨task k⟩?”
- ... in addition to the tasks of their route?”

swapping two tasks outside - inside a route;
changing of the order of tasks in a route.
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Generating explanations

Reminder | Our use case - (3) Non-expert end-user

A problematic situation for a planner:
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“Ellen is not performing
task 15 in addition to the
tasks of her route...”

“Why is Ellen not
performing task 15 in
addition to the tasks of her
route?”

“How to make Ellen
perform task 15 in addition
to the tasks of her route?”

↪ If no explanations, then lack of trust and confidence...
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Generating explanations

From observations to questions

From 1 observation, 3 questions for the end-user:
From an observation, e.g. “⟨employee i⟩ is not performing ⟨task j⟩
in addition to the tasks of their route?”, we can build:

a contrastive question,
“Why is ⟨employee i⟩ not performing ⟨task j⟩
in addition to the tasks of their route?”
a scenario question,
“What if ⟨changes in the instance parameters⟩?
Would ⟨employee i⟩ be performing ⟨task j⟩
in addition to the tasks of their route?”
a counterfactual question,
“How to make ⟨employee i⟩ perform ⟨task j⟩
in addition to the tasks of their route?”
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Generating explanations

From questions to computation

Computation related to a contrastive question:
Consider a contrastive question, e.g. “Why is ⟨employee i⟩ not
performing ⟨task j⟩ in addition to the tasks of their route?”

Through their question, the end-user implicitly defines
interesting solutions neighboring the current one,
e.g. the solutions obtained by inserting j in the route of i and
choosing a permutation of the tasks in this route.
To answer the question, we must test if these solutions are
feasible and better than the current one;
if not, extract information for why.

↪ We build algorithms for checking solutions feasibility and
improvement which are (depending on the question):

- either polynomial algorithms,
- or mathematical programming.
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Generating explanations

From questions to computation

Computation related to a scenario question:
Consider a scenario question, e.g. “What if ⟨changes in the
instance parameters⟩? Would ⟨employee i⟩ be performing ⟨task j⟩
in addition to the tasks of their route?”

The reasoning is the same as in the contrastive case: the user
implicitly defines solutions neighboring the current one,
but for an instance that is slightly different.
To answer the question, we must test if these solutions are
feasible and better than the current one, relatively to the
new instance; if not, extract why.

↪ We use the same algorithms as for the contrastive case.
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Generating explanations

From questions to computation

Computation related to a counterfactual question:
Consider a counterfactual qu., e.g. “How to make ⟨employee i⟩
perform ⟨task j⟩ in addition to the tasks of their route?”

Through their question, the end-user implicitly defines
interesting solutions neighboring the current one and allow
alterations of the instance parameters.
To answer their question, we must test if these solutions are
feasible and better than the current one, relatively to a set
of new instances; if not, extract why.

↪ We use mathematical programming for exploring the
neighboring solutions while altering the instance parameters.
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Generating explanations

From computation to explanations

Providing an explanation as a text:
We ran the algorithm associated with a question of any type.
We fill explanation template texts with values from the result.

Example of explanation text:
“How to make ⟨employee i⟩ perform ⟨task j⟩ in addition to the
tasks of their route?”
“By ⟨changing the instance parameters as follow based on the
algorithm result⟩,
⟨the desired observation⟩ would be possible;
in this case, the solution would be ⟨the one deduced from the
algorithm result⟩.”
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Example or demo

Example or demo

Planner looking for explanations (1/3):
- Why is Ellen not performing t27 just after t17?

- If Ellen performs t27 just after t17, then she would end t27 at the earliest
at 4:37PM while t27 is not available after 3:00PM.
Therefore Ellen is not performing t27 just after t17.
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Example or demo

Example or demo

Planner looking for explanations (2/3):
- What if t27 was available up to 4:37PM (instead of 3:00PM)?
- If t27 was available until 4:37PM, then Ellen would be able to perform t27

during its availability time-window.
However, in the following steps of her route, Ellen would start t8 at the
earliest at 4:44PM while t8 is not available after 4:40PM.
Therefore, it would still not make Ellen perform t27 just after t17.
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Example or demo

Example or demo

Planner looking for explanations (2/3):
- What if t27 was available up to 4:37PM (instead of 3:00PM)?
- If t27 was available until 4:37PM, then Ellen would be able to perform t27

during its availability time-window.
However, in the following steps of her route, Ellen would start t8 at the
earliest at 4:44PM while t8 is not available after 4:40PM.
Therefore, it would still not make Ellen perform t27 just after t17.
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Example or demo

Example or demo

Planner looking for explanations (3/3):
- How to make Ellen perform t27 just after t17?

- If t27 was available until 4:37PM (instead of 3:00PM) and t8 until 5:24PM
(instead of 4:40PM), then it would make Ellen perform t27 just after t17.
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Planner looking for explanations (3/3):
- How to make Ellen perform t27 just after t17?

- If t27 was available until 4:37PM (instead of 3:00PM) and t8 until 5:24PM
(instead of 4:40PM), then it would make Ellen perform t27 just after t17.
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Example or demo

Example or demo

Planner looking for explanations (3/3):
- How to make Ellen perform t27 just after t17?

- If t27 was available until 4:37PM (instead of 3:00PM) and t8 until 5:24PM
(instead of 4:40PM), then it would make Ellen perform t27 just after t17.
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Conclusion

Conclusion

Achieved work:
Approach for generating explanations that:

- is thought for an end-user of a system solving a WSRP;
- starts from observations about a solution;
- handles contrastive, scenario or counterfactual questions;
- is (often) based on mathematical programming;
- outputs texts thanks to templates;

to prevent the end-user from loosing trust and confidence.
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Conclusion

Conclusion

Work in progress:

Evaluate how explanations influence end-users’ trust.
Perform an exhaustive study for assessing computational
efficiency of explanations generation.

Perspectives:
How much generic is our approach?
Can we transpose it to other optimization problems?
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Thank you for your attention!
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