

ROADEF 2025

ML-guided MILP reoptimization applied to LSP

Mathieu Lerouge^{1,2}

Andrea Lodi¹, Enrico Malaguti¹, Michele Monaci¹ & Filippo Focacci²

✉ mathieu.lerouge@unibo.it

⌚ mathieulerouge.github.io

February 28, 2025

1

ALMA MATER STUDIORUM
UNIVERSITÀ DI BOLOGNA

2

Plan

- 1 Introduction
- 2 Related works
- 3 Our reoptimization approach
- 4 Use of Graph Convolutional Neural Networks (GCNNs)
- 5 Conclusion

Plan

1 Introduction

- Motivating example
- General context

Lot Sizing Problem (LSP):

Given:

- a planning horizon discretized into **periods**;
- a set of **machines** with limited capacities;
- a set of **items**, such that each item has:
 - ▶ initial inventory,
 - ▶ demands over time periods,
 - ▶ production unit and fixed setup resource consumption,
 - ▶ setup, production, inventory and lost sales unitary costs;

Lot Sizing Problem (LSP):

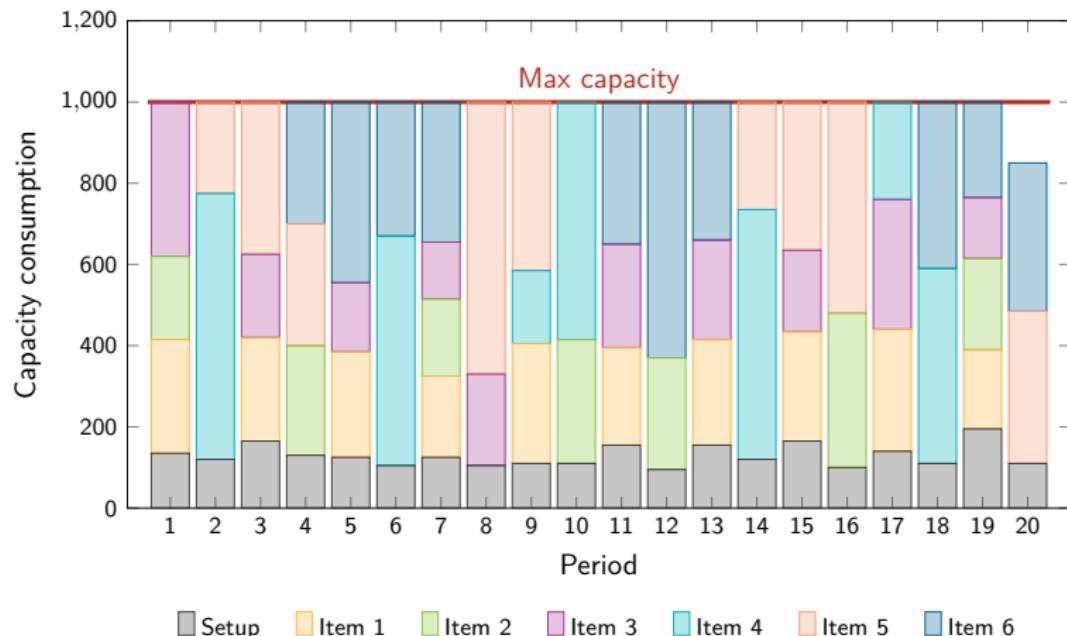
Given:

- a planning horizon discretized into **periods**;
- a set of **machines** with limited capacities;
- a set of **items**, such that each item has:
 - ▶ initial inventory,
 - ▶ demands over time periods,
 - ▶ production unit and fixed setup resource consumption,
 - ▶ setup, production, inventory and lost sales unitary costs;

define a **production plan** minimizing the total cost (setup, production, inventory and lost sales).

Motivating example - LSP solution

Productions on one machine:



Motivating example - LSP MILP model

LSP MILP model:

min setup + production + inventory + lost sales costs

s.t. production and inventory vs demand and lost sales constraints
capacity constraints
minimum production constraints
[...]

$Y_{mit} \in \{0,1\}$ $m \in \{\text{machines}\}$, $i \in \{\text{items}\}$, $t \in \{\text{periods}\}$

$X_{mit} \geq 0$ $m \in \{\text{machines}\}$, $i \in \{\text{items}\}$, $t \in \{\text{periods}\}$

[...]

Motivating example - LSP MILP model

LSP MILP model:

min setup + production + inventory + lost sales costs

s.t. production and inventory vs demand and lost sales constraints
capacity constraints
minimum production constraints
[...]

$Y_{mit} \in \{0,1\}$ $m \in \{\text{machines}\}$, $i \in \{\text{items}\}$, $t \in \{\text{periods}\}$

$X_{mit} \geq 0$ $m \in \{\text{machines}\}$, $i \in \{\text{items}\}$, $t \in \{\text{periods}\}$

[...]

Motivating example - LSP MILP model

LSP MILP model:

min setup + production + inventory + lost sales costs

s.t. production and inventory vs demand and lost sales constraints

capacity constraints

minimum production constraints

[...]

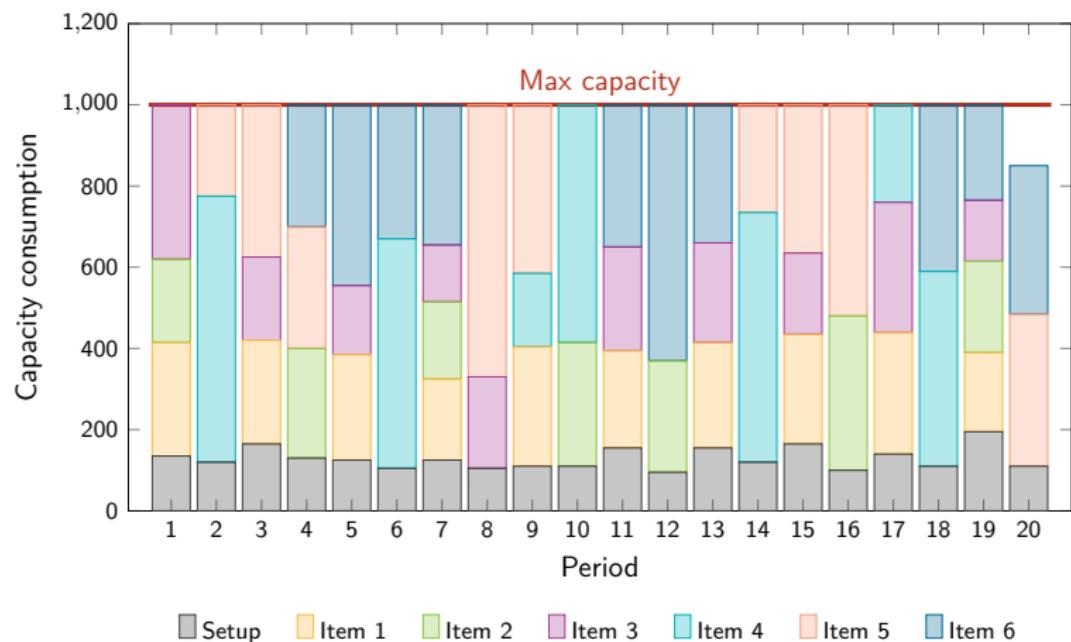
$$Y_{mit} \in \{0, 1\} \quad m \in \{\text{machines}\}, \quad i \in \{\text{items}\}, \quad t \in \{\text{periods}\}$$

$$X_{mit} \geq 0 \quad \quad m \in \{\text{machines}\}, i \in \{\text{items}\}, t \in \{\text{periods}\}$$

[...]

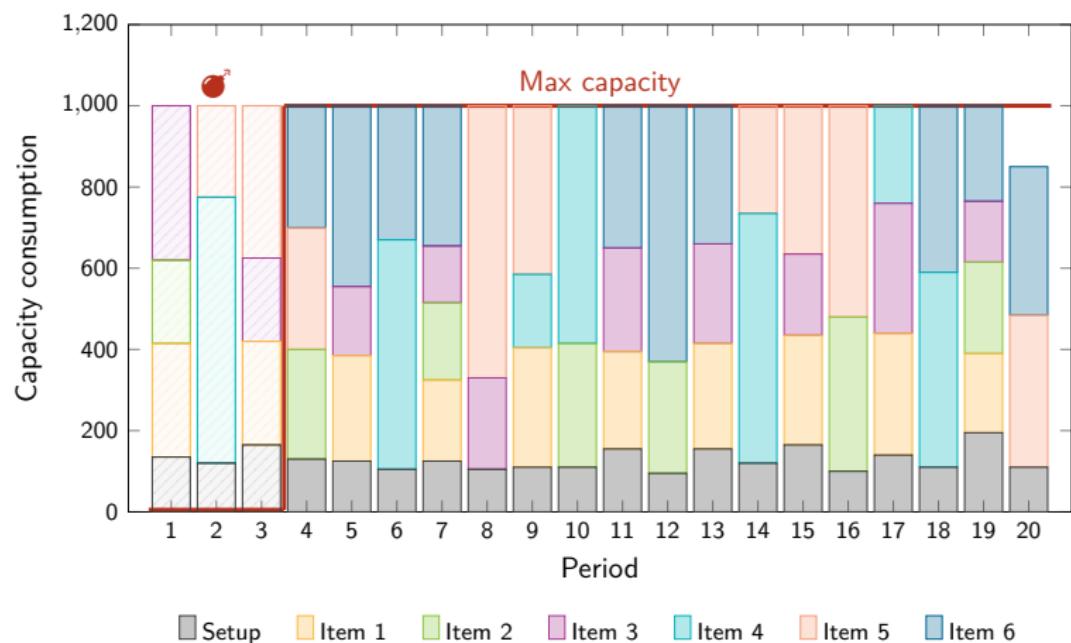
Motivating example - LSP perturbation

Productions perturbed due to machine breakdown:



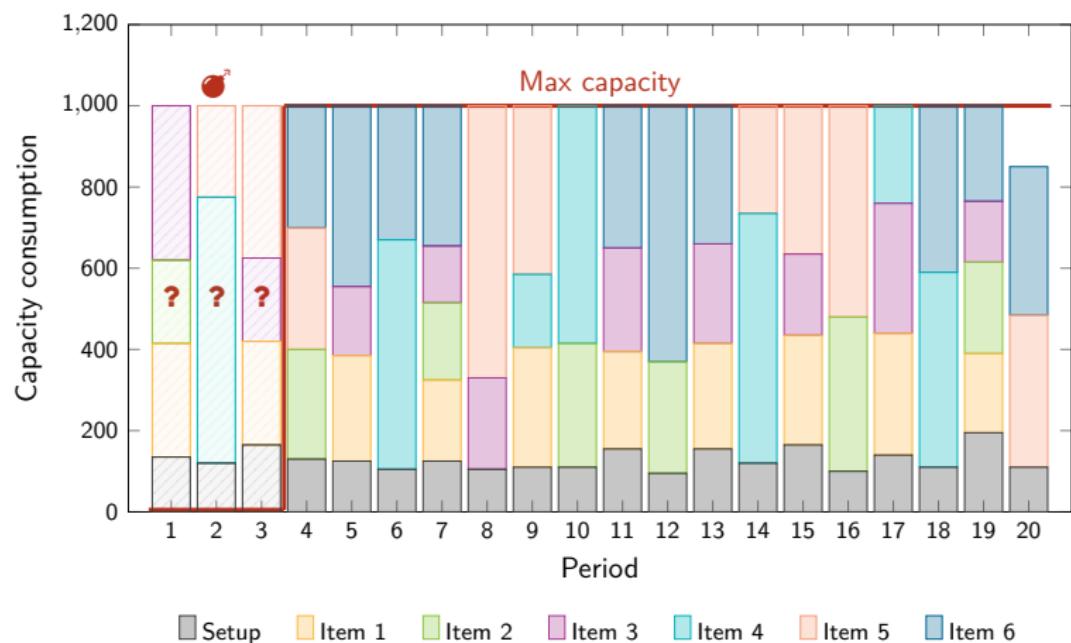
Motivating example - LSP perturbation

Productions perturbed due to machine breakdown:



Motivating example - LSP perturbation

Productions perturbed due to machine breakdown:



Plan

1 Introduction

- Motivating example
- General context

2 Related works

3 Our reoptimization approach

4 Use of Graph Convolutional Neural Networks (GCNNs)

5 Conclusion

General context - Original setting

Original setting:

- NP-hard combinatorial optimization problem (e.g. LSP) modeled as a **MILP** Π ;
- \mathcal{I} **instance**;
- \mathcal{S} (optimal or near-optimal) **solution** of \mathcal{I} :
 - ▶ obtained after a long computation time (e.g. hours),
 - ▶ using an MILP solver.

General context - Perturbed setting

Perturbed setting:

A short time before the execution of \mathcal{S} :

- **Perturbations \mathcal{P}** are observed (e.g. machine breakdown),
 - ▶ affecting the coefficients of \mathcal{I} (e.g. capacity coefficient),
 - ▶ and invalidating \mathcal{S} (w.r.t. feasibility or optimality).
- A new instance, “**perturbed instance**”, \mathcal{I}' can be defined:
 - ▶ with the same dimensions as \mathcal{I} ,
 - ▶ but with coefficients slightly different.

General context - Perturbed setting

Perturbed setting:

A short time before the execution of \mathcal{S} :

- **Perturbations \mathcal{P}** are observed (e.g. machine breakdown),
 - ▶ affecting the coefficients of \mathcal{I} (e.g. capacity coefficient),
 - ▶ and invalidating \mathcal{S} (w.r.t. feasibility or optimality).
- A new instance, “**perturbed instance**”, \mathcal{I}' can be defined:
 - ▶ with the same dimensions as \mathcal{I} ,
 - ▶ but with coefficients slightly different.

General context - Needs

Needs:

Finding a **new solution** S' while satisfying various criteria:

- (a) adaptation of S' to perturbations;
- (b) good quality of S' ;
- (c) short computation time (e.g. a few tens of seconds or minutes);
- (d) controlled deviation of S' from original solution S .

❓ How to compute such an S' ?

- using an MILP-based approach;
- involving Machine Learning (ML).

General context - Needs

Needs:

Finding a **new solution** S' while satisfying various criteria:

- (a) adaptation of S' to perturbations;
- (b) good quality of S' ;
- (c) short computation time (e.g. a few tens of seconds or minutes);
- (d) controlled deviation of S' from original solution S .

② How to compute such an S' ?

- using an MILP-based approach;
- involving Machine Learning (ML).

Plan

- 1 Introduction
- 2 Related works
- 3 Our reoptimization approach
- 4 Use of Graph Convolutional Neural Networks (GCNNs)
- 5 Conclusion

Related works - Reoptimization of NP-hard problems

Reoptimization of NP-hard problems:

Several works on reoptimizing NP-hard problems, such as works on:

- Scheduling Problems, e.g. [Schäffter, 1997];
- Traveling Sales Problems, e.g. [Archetti et al., 2003];
- Steiner Tree Problems, e.g. [Böckenhauer et al., 2008].

 the methods can only be applied to these specific problems and assume quite restrictive instance perturbations.

[Schäffter, 1997] Scheduling with forbidden sets

[Archetti et al., 2003] Reoptimizing the Traveling Salesman Problem

[Böckenhauer et al., 2008] On the hardness of reoptimization

Related works - Reoptimization of NP-hard problems

Reoptimization of NP-hard problems:

Several works on reoptimizing NP-hard problems, such as works on:

- Scheduling Problems, e.g. [Schäffter, 1997];
- Traveling Sales Problems, e.g. [Archetti et al., 2003];
- Steiner Tree Problems, e.g. [Böckenhauer et al., 2008].

⚠ the methods can only be applied to these **specific problems and assume quite **restrictive instance perturbations**.**

[Schäffter, 1997] Scheduling with forbidden sets

[Archetti et al., 2003] Reoptimizing the Traveling Salesman Problem

[Böckenhauer et al., 2008] On the hardness of reoptimization

Related works - ML and MILP reoptimization

ML and MILP reoptimization:

Several works on MILP reoptimization leveraging ML, among them:

- [Xavier et al., 2021]
 - 💡 ML for initializing a separation-like algorithm;
 - ⚠️ limited to problems solvable through separation techniques.
- [Lodi et al., 2020] and [Morabit et al., 2023]
 - 💡 ML for defining a reoptimization problem whose feasible solution space is reduced compared to the original one;
 - ⚠️ require training an ML model for each instance dimension.

[Xavier et al., 2021] Learning to solve large-scale security-constrained Unit Commitment Problems

[Lodi et al., 2020] Learning to handle parameter perturbations in Comb. Opt.: an application to Facility Location

[Morabit et al., 2023] Learning to repeatedly solve routing problems

Related works - ML and MILP reoptimization

ML and MILP reoptimization:

Several works on MILP reoptimization leveraging ML, among them:

- [Xavier et al., 2021]
 - 💡 ML for initializing a separation-like algorithm;
 - ⚠️ limited to problems solvable through separation techniques.
- [Lodi et al., 2020] and [Morabit et al., 2023]
 - 💡 ML for defining a reoptimization problem whose feasible solution space is reduced compared to the original one;
 - ⚠️ require training an ML model for each instance dimension.

[Xavier et al., 2021] Learning to solve large-scale security-constrained Unit Commitment Problems

[Lodi et al., 2020] Learning to handle parameter perturbations in Comb. Opt.: an application to Facility Location

[Morabit et al., 2023] Learning to repeatedly solve routing problems

Related works - Our ambition

Our ambition in relation to existing works:

Designing an MILP-based approach, leveraging ML techniques, for reoptimizing solutions after instance perturbations, which:

- considers “complex” perturbations;
- is applicable to various problems;
- handles instances of various dimensions.

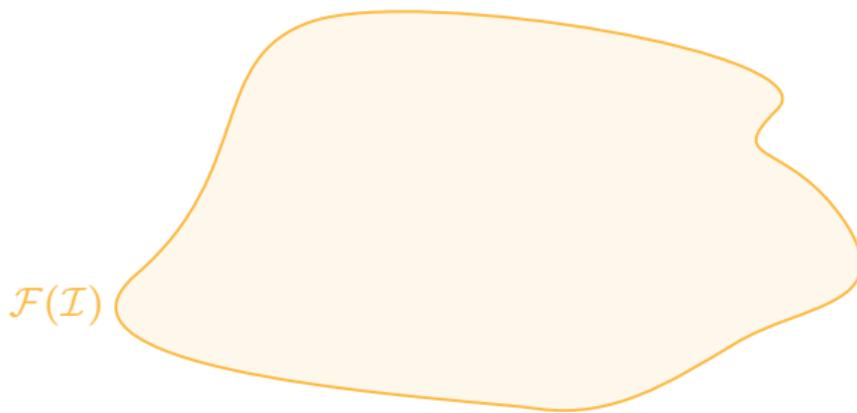
Plan

- 1 Introduction
- 2 Related works
- 3 Our reoptimization approach
- 4 Use of Graph Convolutional Neural Networks (GCNNs)
- 5 Conclusion

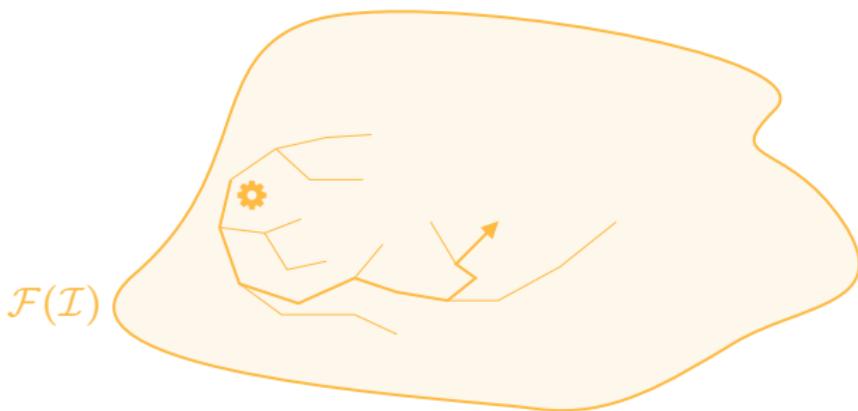
Plan

- 1 Introduction
- 2 Related works
- 3 Our reoptimization approach
 - Towards ML-guided MILP reoptimization
 - Parametric neighborhood
 - Framework
- 4 Use of Graph Convolutional Neural Networks (GCNNs)
- 5 Conclusion

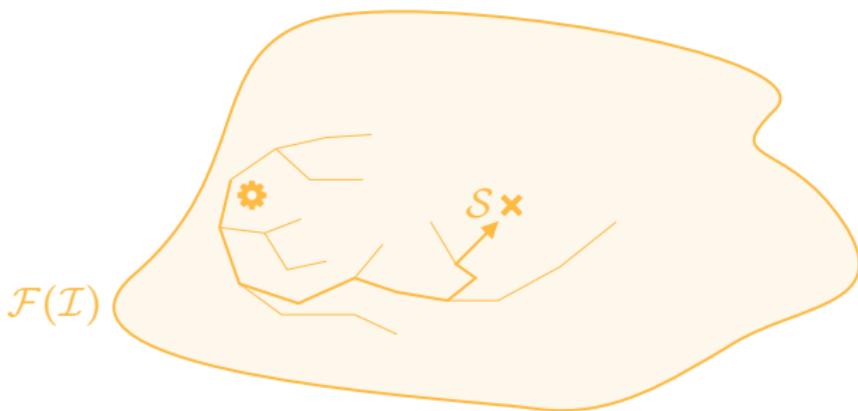
Towards ML-guided MILP reopt. - Original setting



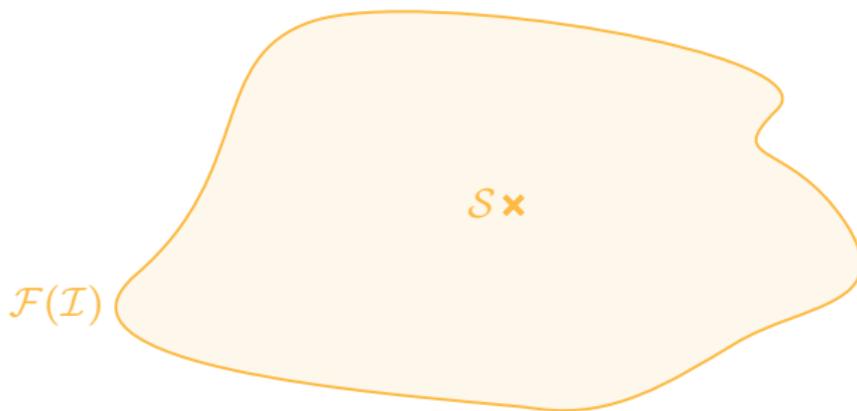
Towards ML-guided MILP reopt. - Original setting



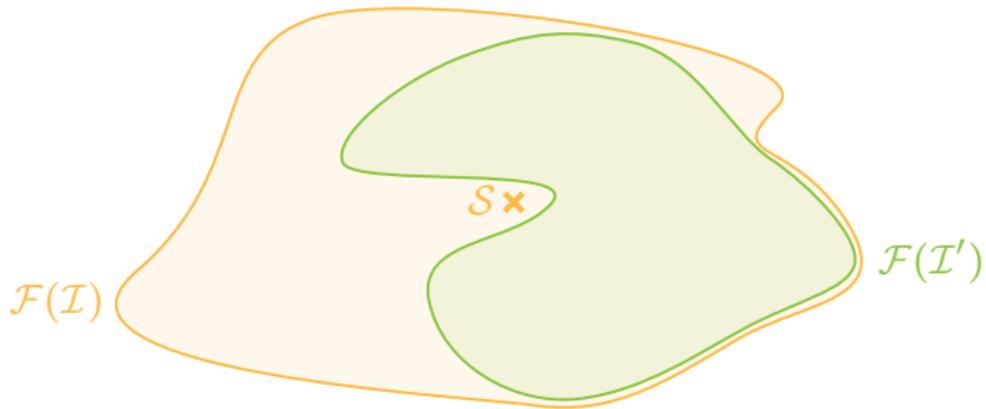
Towards ML-guided MILP reopt. - Original setting



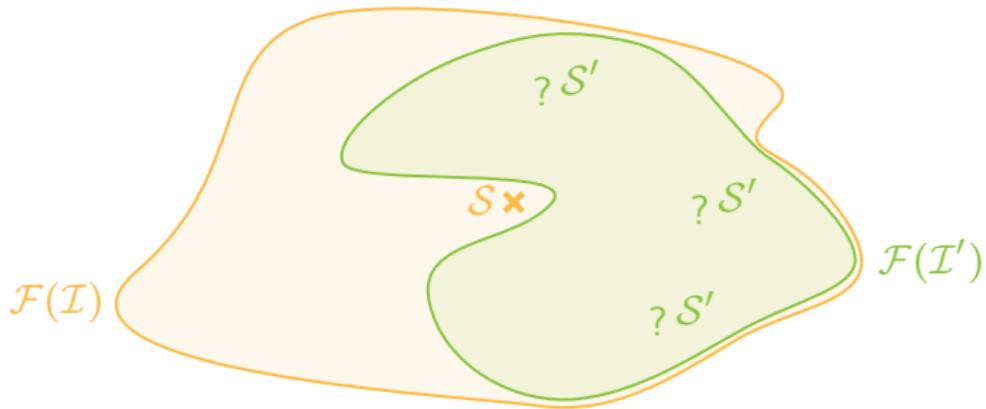
Towards ML-guided MILP reopt. - Original setting



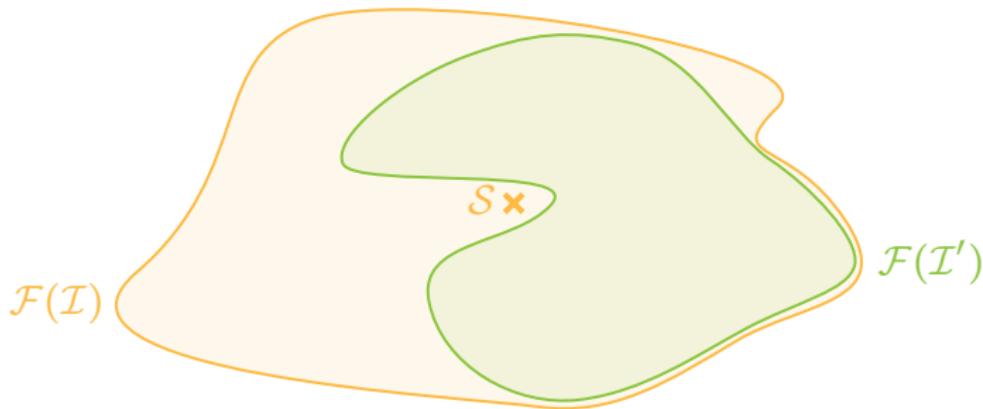
Towards ML-guided MILP reopt. - Perturbed setting



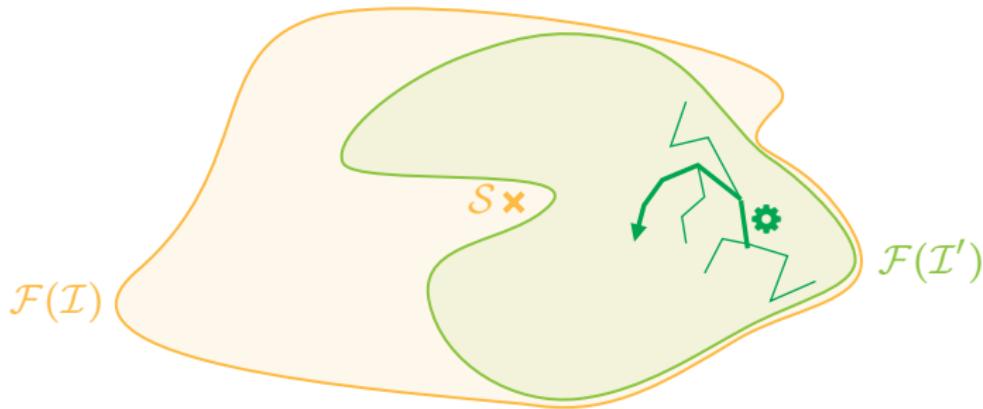
Towards ML-guided MILP reopt. - Perturbed setting



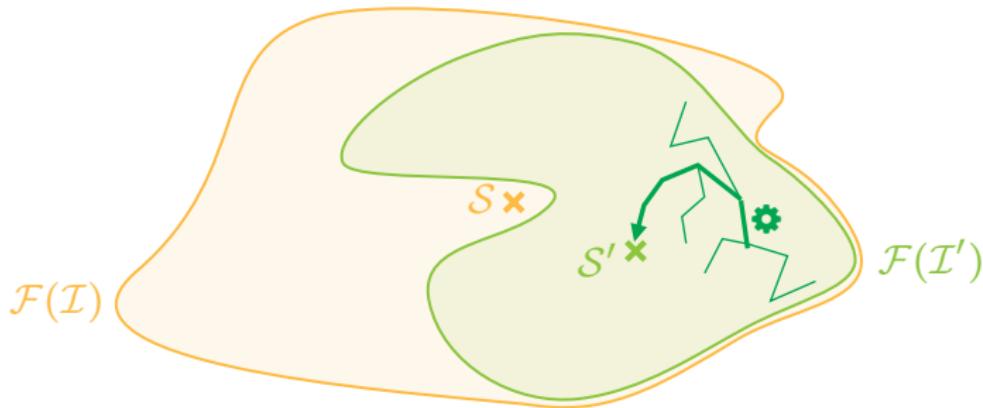
Towards ML-guided MILP reopt. - Naive approach



Towards ML-guided MILP reopt. - Naive approach



Towards ML-guided MILP reopt. - Naive approach



Towards ML-guided MILP reopt. - Naive approach

Naive approach:

Obtain \mathcal{S}' by solving original MILP Π , on new instance \mathcal{I}' .

So that:

(a) ✓ \mathcal{S}' is feasible w.r.t. \mathcal{I}' ;

but:

(b) (c) ✗ computing a “good” \mathcal{S}' is likely to take a long time;

(d) ✗ \mathcal{S}' is free to deviate indefinitely from \mathcal{S} .

Towards ML-guided MILP reopt. - Naive approach

Naive approach:

Obtain \mathcal{S}' by solving original MILP Π , on new instance \mathcal{I}' .

So that:

(a) ✓ \mathcal{S}' is feasible w.r.t. \mathcal{I}' ;

but:

(b) (c) ✗ computing a “good” \mathcal{S}' is likely to take a long time;

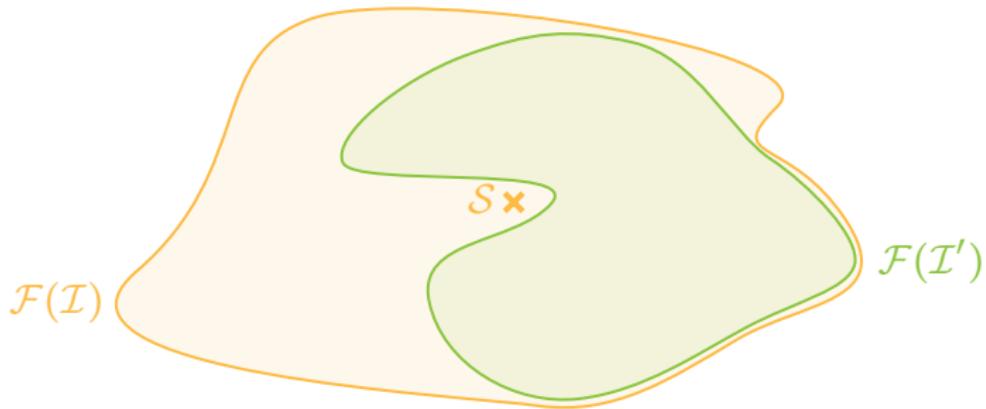
(d) ✗ \mathcal{S}' is free to deviate indefinitely from \mathcal{S} .

Towards ML-guided MILP reopt. - First assumption

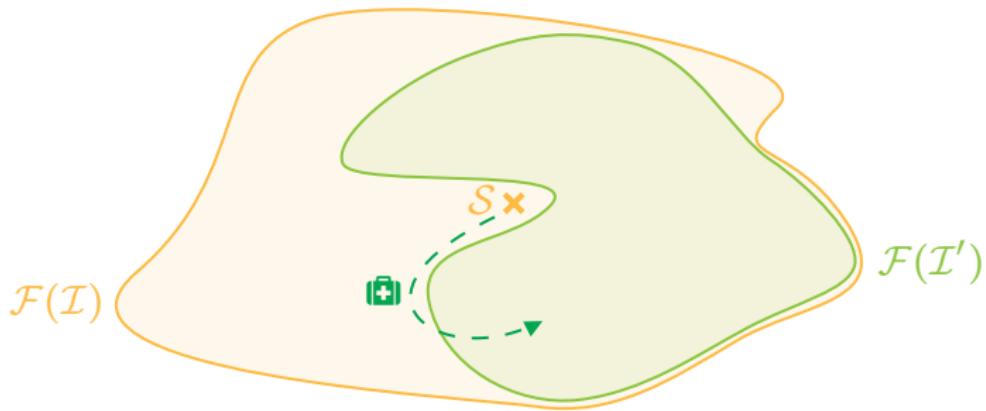
First assumption:

We assume that we know a **repairing method** with which, from \mathcal{S} , we can build \mathcal{S}'_r a new solution feasible w.r.t. \mathcal{I}' .

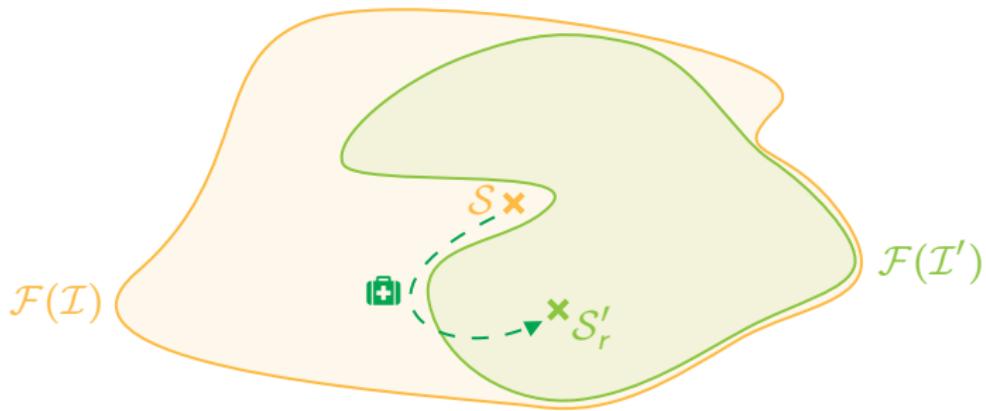
Towards ML-guided MILP reopt. - Baseline approach



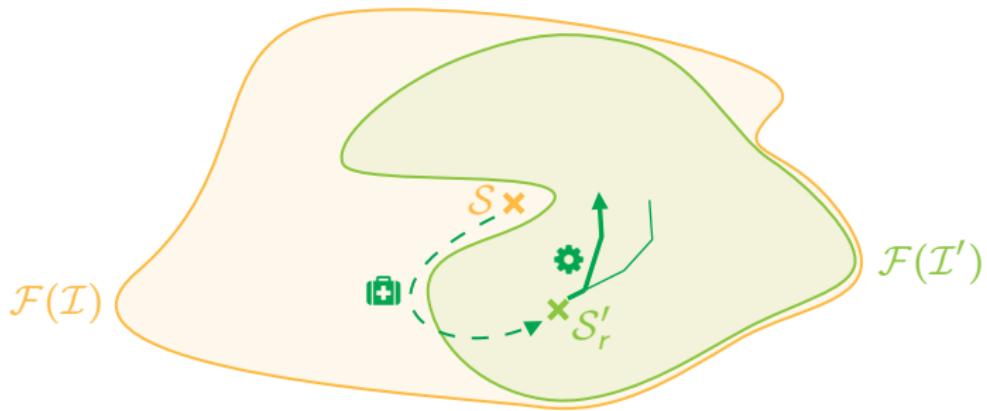
Towards ML-guided MILP reopt. - Baseline approach



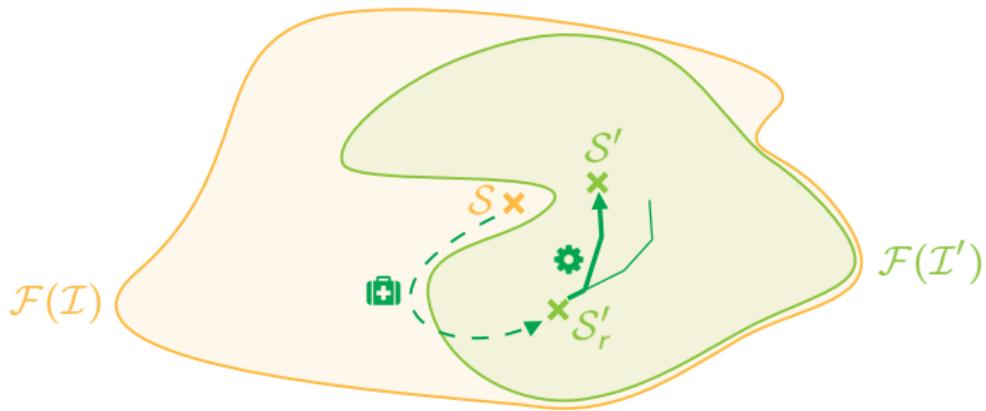
Towards ML-guided MILP reopt. - Baseline approach



Towards ML-guided MILP reopt. - Baseline approach



Towards ML-guided MILP reopt. - Baseline approach



Towards ML-guided MILP reopt. - Baseline approach

Baseline approach:

Obtain \mathcal{S}' by solving original MILP Π , on new instance \mathcal{I}' , and **warm-started with \mathcal{S}'_r** .

So that:

(a) ✓ \mathcal{S}' is feasible w.r.t. \mathcal{I}' ;

but:

(b)(c) \approx computing a “good” \mathcal{S}' may still take a long time;

(d) ✗ \mathcal{S}' is still quite free to deviate indefinitely from \mathcal{S} .

Towards ML-guided MILP reopt. - Baseline approach

Baseline approach:

Obtain \mathcal{S}' by solving original MILP Π , on new instance \mathcal{I}' , and **warm-started with \mathcal{S}'_r** .

So that:

(a) \mathcal{S}' is feasible w.r.t. \mathcal{I}' ;

but:

(b)(c) computing a “good” \mathcal{S}' may still take a long time;

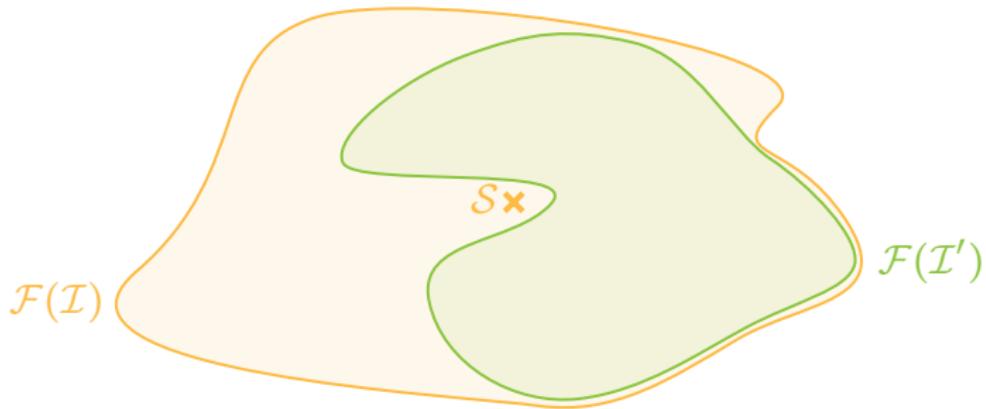
(d) \mathcal{S}' is still quite free to deviate indefinitely from \mathcal{S} .

Towards ML-guided MILP reopt. - Second assumption

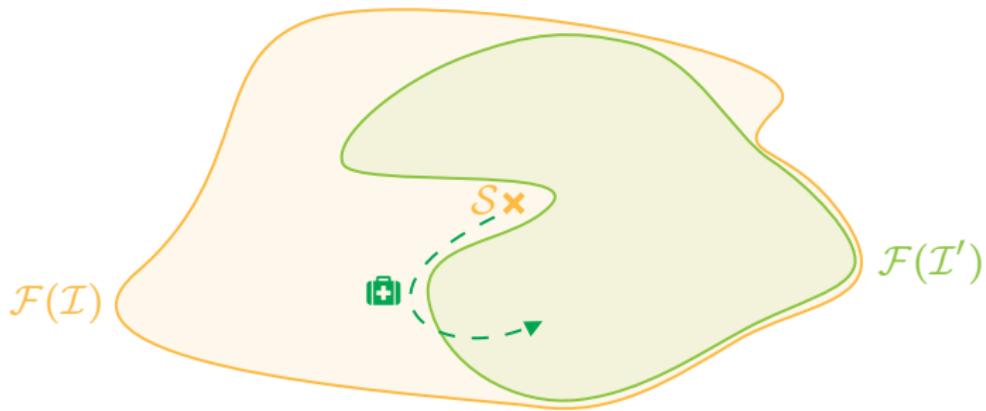
Second assumption:

We assume that we can define $\mathcal{N}(\mathcal{S})$ a **neighborhood** around \mathcal{S} , which contains the repaired solution \mathcal{S}'_r .

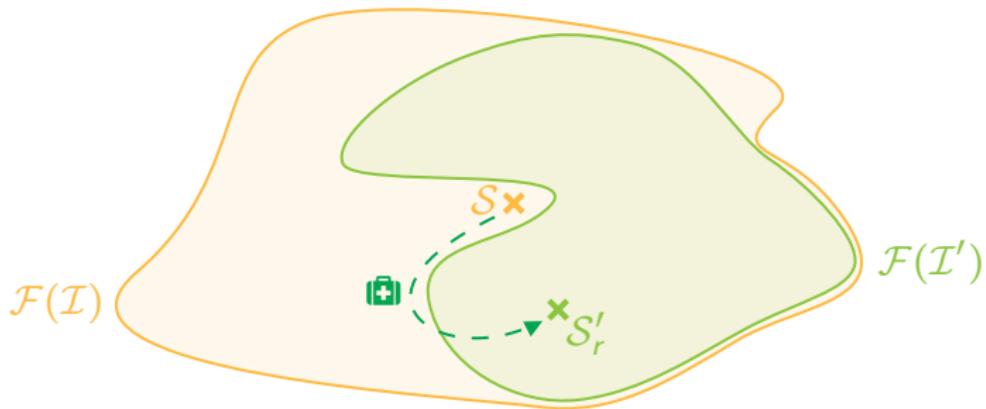
Towards ML-guided MILP reopt. - Local reoptimization



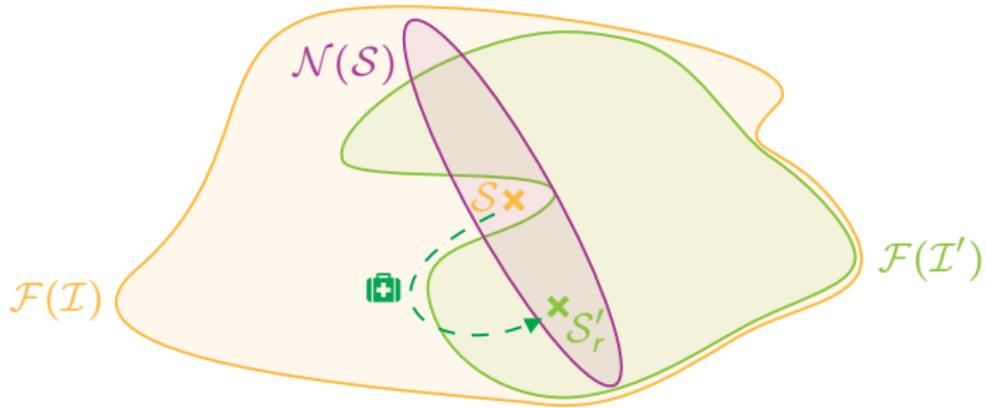
Towards ML-guided MILP reopt. - Local reoptimization



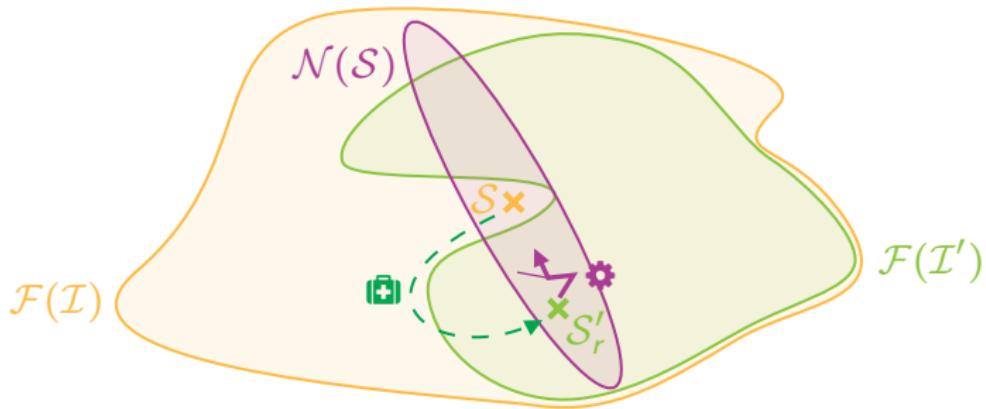
Towards ML-guided MILP reopt. - Local reoptimization



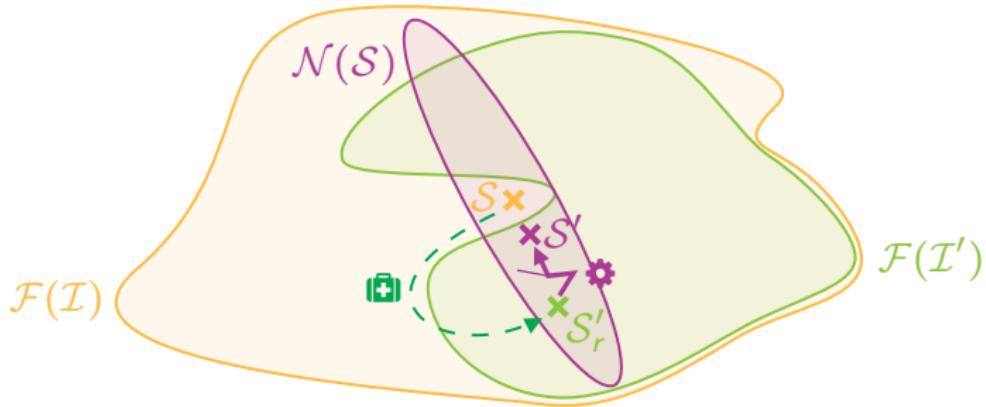
Towards ML-guided MILP reopt. - Local reoptimization



Towards ML-guided MILP reopt. - Local reoptimization



Towards ML-guided MILP reopt. - Local reoptimization



Towards ML-guided MILP reopt. - Local reoptimization

Local reoptimization:

Obtain \mathcal{S}' by solving a new MILP $\Pi_{\mathcal{N}(\mathcal{S})}$, which:

- is built on the original MILP Π ;
- has constraints enforcing \mathcal{S}' to be in neighborhood $\mathcal{N}(\mathcal{S})$;
- and is warm-started with \mathcal{S}'_r .

So that:

- (a) ✓ \mathcal{S}' is feasible w.r.t. \mathcal{I}' ;
- (b) (c) ✓ computing a “good” \mathcal{S}' might be more efficient,
as the solution space is smaller;
- (d) ✓ the deviation between \mathcal{S} and \mathcal{S}' is controlled.

💡 Use Machine Learning (ML) to choose the neighborhood $\mathcal{N}(\mathcal{S})$.

Towards ML-guided MILP reopt. - Local reoptimization

Local reoptimization:

Obtain \mathcal{S}' by solving a new MILP $\Pi_{\mathcal{N}(\mathcal{S})}$, which:

- is built on the original MILP Π ;
- has constraints enforcing \mathcal{S}' to be in neighborhood $\mathcal{N}(\mathcal{S})$;
- and is warm-started with \mathcal{S}'_r .

So that:

- (a) ✓ \mathcal{S}' is feasible w.r.t. \mathcal{I}' ;
- (b) (c) ✓ computing a “good” \mathcal{S}' might be more efficient, as the solution space is smaller;
- (d) ✓ the deviation between \mathcal{S} and \mathcal{S}' is controlled.

💡 Use Machine Learning (ML) to choose the neighborhood $\mathcal{N}(\mathcal{S})$.

Towards ML-guided MILP reopt. - Local reoptimization

Local reoptimization:

Obtain \mathcal{S}' by solving a new MILP $\Pi_{\mathcal{N}(\mathcal{S})}$, which:

- is built on the original MILP Π ;
- has constraints enforcing \mathcal{S}' to be in neighborhood $\mathcal{N}(\mathcal{S})$;
- and is warm-started with \mathcal{S}'_r .

So that:

- (a) ✓ \mathcal{S}' is feasible w.r.t. \mathcal{I}' ;
- (b) (c) ✓ computing a “good” \mathcal{S}' might be more efficient, as the solution space is smaller;
- (d) ✓ the deviation between \mathcal{S} and \mathcal{S}' is controlled.

💡 Use Machine Learning (ML) to choose the neighborhood $\mathcal{N}(\mathcal{S})$.

Plan

1 Introduction

2 Related works

3 Our reoptimization approach

- Towards ML-guided MILP reoptimization
- **Parametric neighborhood**
- Framework

4 Use of Graph Convolutional Neural Networks (GCNNs)

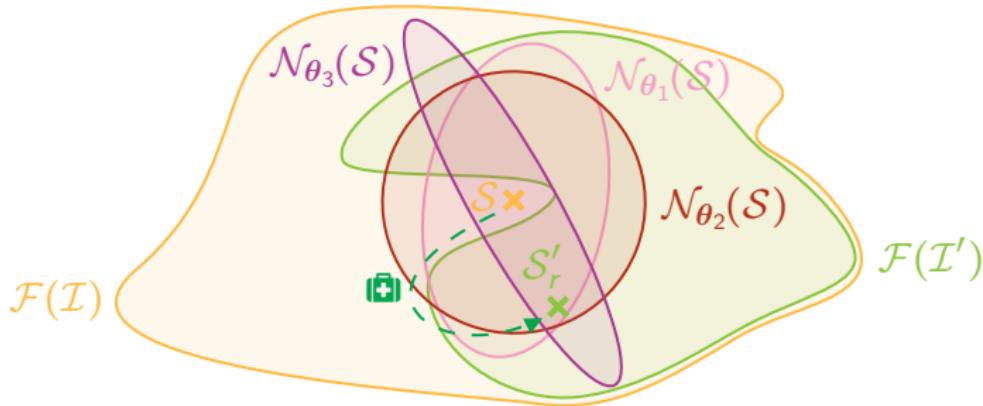
5 Conclusion

Parametric neighborhood

Parametric neighborhood:

Use of a parametric neighborhood $\mathcal{N}_\theta(\mathcal{S})$,
with $\theta \in \mathbb{N}^K$ vector of parameters controlling its size
(where dimension K depends on the studied problem).

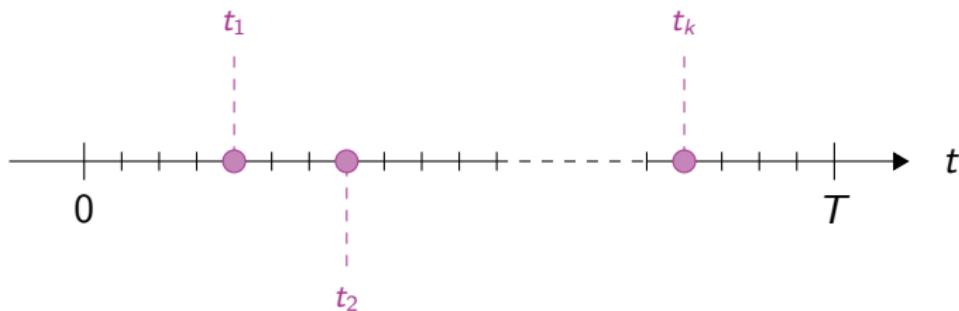
Parametric neighborhood



Parametric neighborhood - LSP neighborhood

Let \mathcal{S} be a LSP solution, m a machine and i an item.

Setups of item i on machine m :



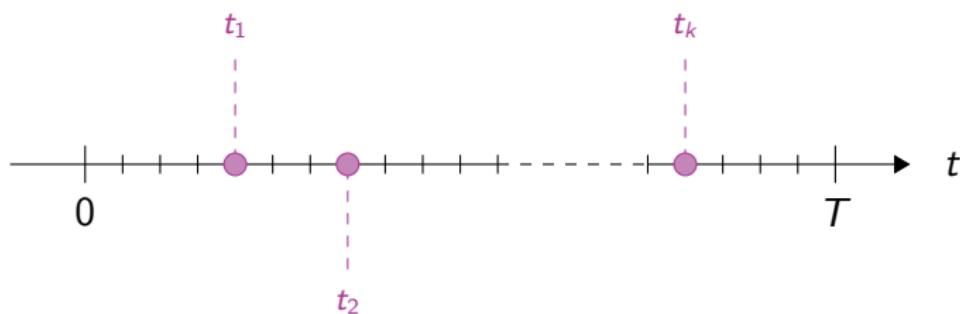
\mathcal{S} , as a MILP solution of Π , verifies:

- $Y_{mit}^* = 1$, for $t \in \{t_1, t_2, \dots, t_k\}$;
- $Y_{mit}^* = 0$, otherwise.

Parametric neighborhood - LSP neighborhood

Let \mathcal{S} be a LSP solution, m a machine and i an item.

Setups of item i on machine m :



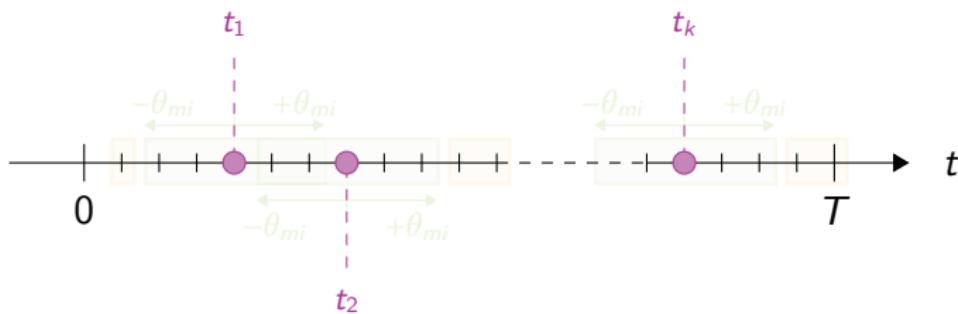
\mathcal{S} , as a MILP solution of Π , verifies:

- $Y_{mit}^* = 1$, for $t \in \{t_1, t_2, \dots, t_k\}$;
- $Y_{mit}^* = 0$, otherwise.

Parametric neighborhood - LSP neighborhood

Given \mathcal{S} , m and i , we choose $\theta_{mi} \in \mathbb{N}$.

Periods close to/far from setups:



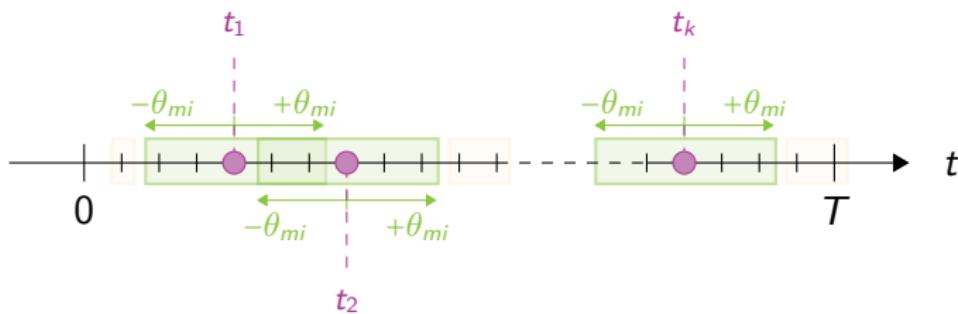
We call:

- $t \in \boxed{\text{light green}}$: periods close to setups of i on m ;
- $t \in \boxed{\text{light orange}}$: periods far from setups of i on m .

Parametric neighborhood - LSP neighborhood

Given \mathcal{S} , m and i , we choose $\theta_{mi} \in \mathbb{N}$.

Periods close to/far from setups:



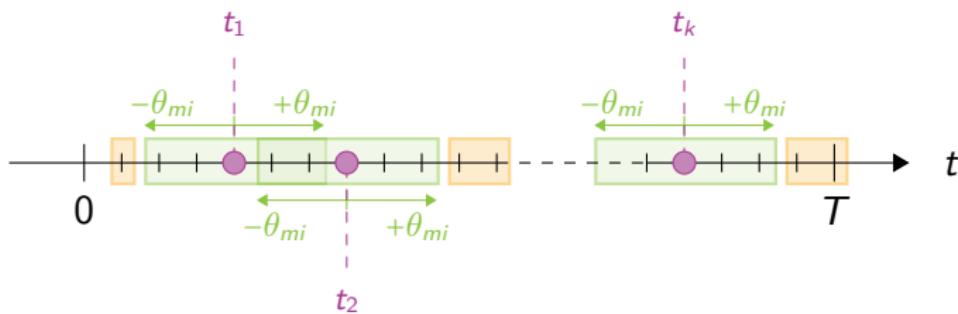
We call:

- $t \in \square$: periods close to setups of i on m ;
- $t \in \square$: periods far from setups of i on m .

Parametric neighborhood - LSP neighborhood

Given \mathcal{S} , m and i , we choose $\theta_{mi} \in \mathbb{N}$.

Periods close to/far from setups:



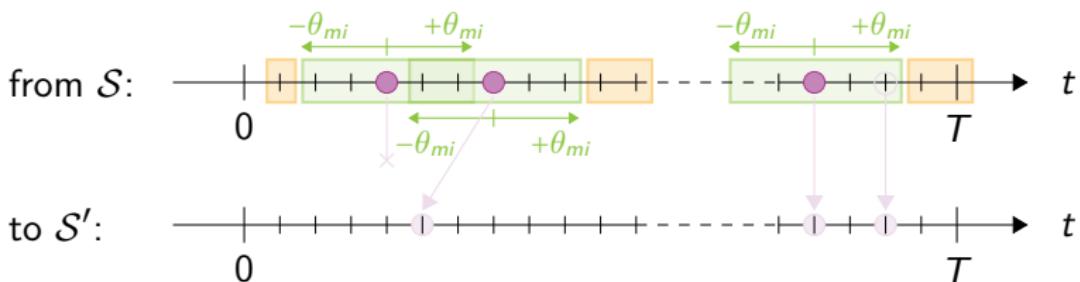
We call:

- $t \in \square$: periods close to setups of i on m ;
- $t \in \square$: periods far from setups of i on m .

Parametric neighborhood - LSP neighborhood

Given \mathcal{S} , we choose $\theta_{mi} \in \mathbb{N}$ for each machine m and item i .

Neighborhood of \mathcal{S} - Allowed operations on setups:



with $\mathcal{S}' \in \mathcal{N}_\theta(\mathcal{S})$.

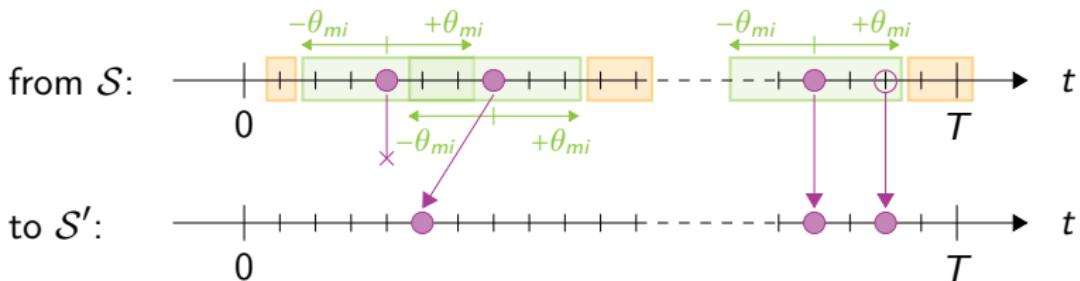
New MILP model $\Pi_{\mathcal{N}_\theta(\mathcal{S})}$ contains:

- $Y_{mit} = 0$, for $t \in \square$ (far from setups);
- $Y_{mit} \in \{0, 1\}$, for $t \in \square$ (close to setups).

Parametric neighborhood - LSP neighborhood

Given \mathcal{S} , we choose $\theta_{mi} \in \mathbb{N}$ for each machine m and item i .

Neighborhood of \mathcal{S} - Allowed operations on setups:



with $\mathcal{S}' \in \mathcal{N}_\theta(\mathcal{S})$.

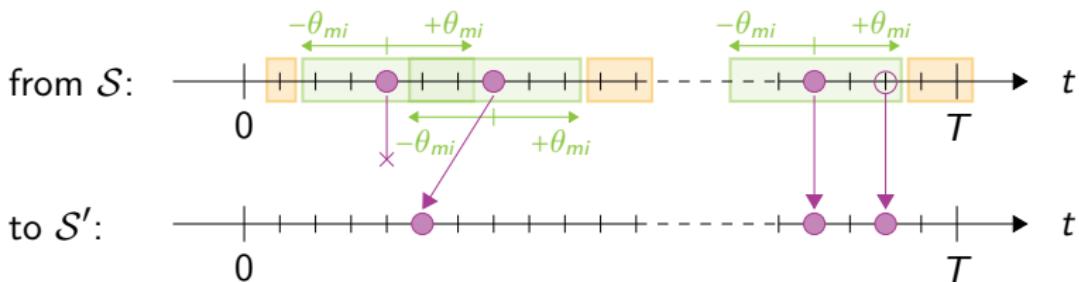
New MILP model $\Pi_{\mathcal{N}_\theta(\mathcal{S})}$ contains:

- $Y_{mit} = 0$, for $t \in \square$ (far from setups);
- $Y_{mit} \in \{0, 1\}$, for $t \in \square$ (close to setups).

Parametric neighborhood - LSP neighborhood

Given \mathcal{S} , we choose $\theta_{mi} \in \mathbb{N}$ for each machine m and item i .

Neighborhood of \mathcal{S} - Allowed operations on setups:



with $\mathcal{S}' \in \mathcal{N}_\theta(\mathcal{S})$.

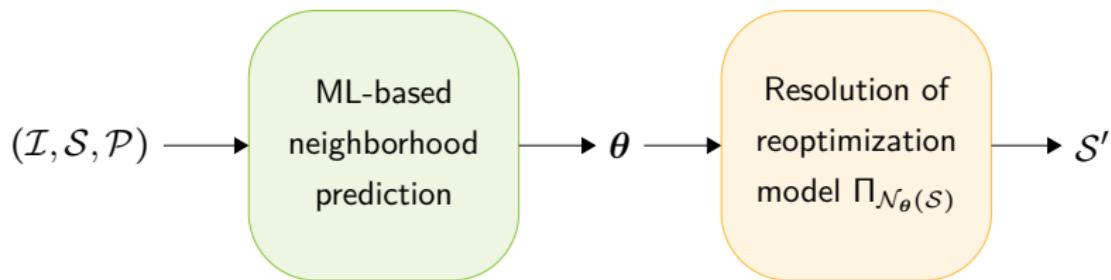
New MILP model $\Pi_{\mathcal{N}_\theta(\mathcal{S})}$ contains:

- $Y_{mit} = 0$, for $t \in \square$ (far from setups);
- $Y_{mit} \in \{0, 1\}$, for $t \in \square$ (close to setups).

Plan

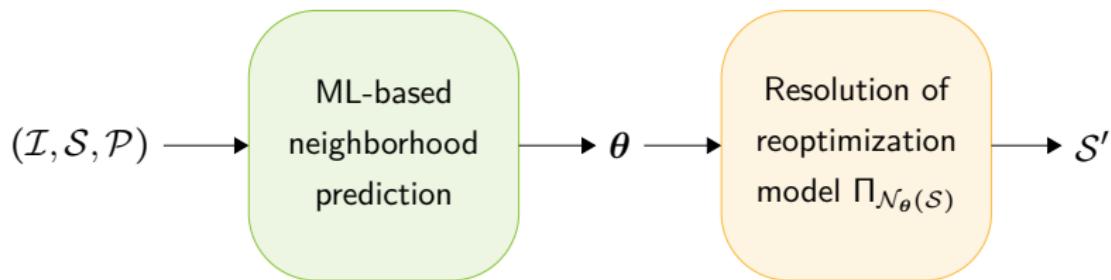
- 1 Introduction
- 2 Related works
- 3 Our reoptimization approach
 - Towards ML-guided MILP reoptimization
 - Parametric neighborhood
 - Framework
- 4 Use of Graph Convolutional Neural Networks (GCNNs)
- 5 Conclusion

Framework



- ⚠ What ML model to choose for predicting θ ?
- ⚠ Dimensions of the inputs (I, S, P) may vary.

Framework



- ❓ What ML model to choose for predicting θ ?
- ⚠ Dimensions of the inputs (I, S, P) may vary.

Plan

- 1 Introduction
- 2 Related works
- 3 Our reoptimization approach
- 4 Use of Graph Convolutional Neural Networks (GCNNs)
- 5 Conclusion

Plan

- 1 Introduction
- 2 Related works
- 3 Our reoptimization approach
- 4 Use of Graph Convolutional Neural Networks (GCNNs)
 - Brief introduction to GCNNs
 - Embedding a MILP into a graph
 - GCNN architecture
 - Framework with GCNN
- 5 Conclusion

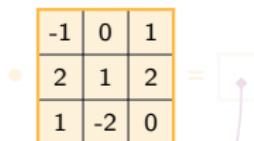
Brief introduction to GCNNs

Convolution with a kernel in CNNs:

Source layer

5	2	6	8	2	...	-
4	3	4	5	1	...	-
3	9	2	4	7	...	-
1	3	4	8	2	...	-
8	6	4	3	1	...	-
...	-
-	-	-	-	-	-	+
-	-	-	-	-	-	-

Convolution kernel



Destination layer

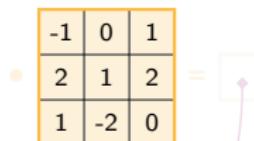
Brief introduction to GCNNs

Convolution with a kernel in CNNs:

Source layer

5	2	6	8	2	...	-
4	3	4	5	1	...	-
3	9	2	4	7	...	-
1	3	4	8	2	...	-
8	6	4	3	1	...	-
...	-
-	-	-	-	-	-	+
-	-	-	-	-	-	-

Convolution kernel



Destination layer

1	2	3	4	5	6	7	8	9
1	2	3	4	5	6	7	8	9
1	2	3	4	5	6	7	8	9
1	2	3	4	5	6	7	8	9
1	2	3	4	5	6	7	8	9

Brief introduction to GCNNs

Convolution with a kernel in CNNs:

Source layer

5	2	6	8	2	...
4	3	4	5	1	...
3	9	2	4	7	...
1	3	4	8	2	...
8	6	4	3	1	...
...
—	—	—	—	—	—

Convolution kernel

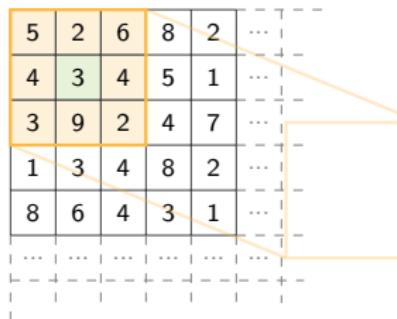
-1	0	1
2	1	2
1	-2	0

Destination layer

Brief introduction to GCNNs

Convolution with a kernel in CNNs:

Source layer



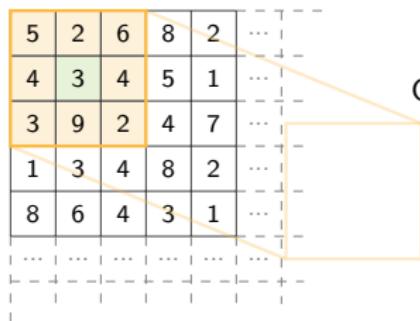
Convolution kernel

$$\begin{aligned}
 & (-1 \times 5) + (0 \times 2) + (1 \times 6) \\
 & + (2 \times 4) + (1 \times 3) + (2 \times 4) \\
 & + (1 \times 3) + (-2 \times 9) + (0 \times 2)
 \end{aligned}$$

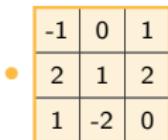
Brief introduction to GCNNs

Convolution with a kernel in CNNs:

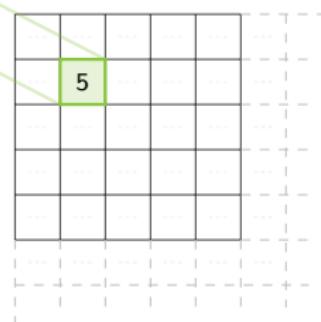
Source layer



Convolution kernel



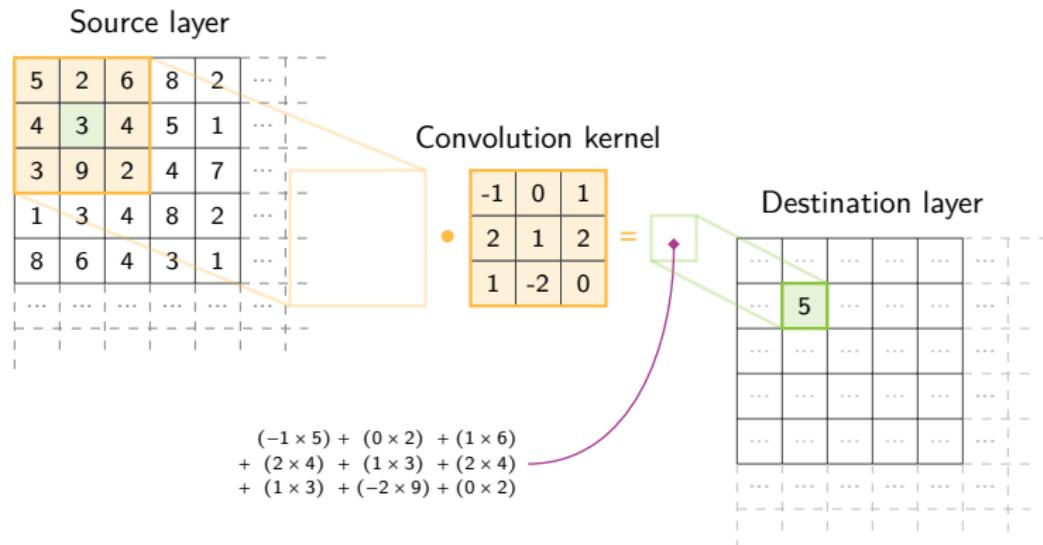
Destination layer



$$\begin{aligned}
 & (-1 \times 5) + (0 \times 2) + (1 \times 6) \\
 & + (2 \times 4) + (1 \times 3) + (2 \times 4) \\
 & + (1 \times 3) + (-2 \times 9) + (0 \times 2)
 \end{aligned}$$

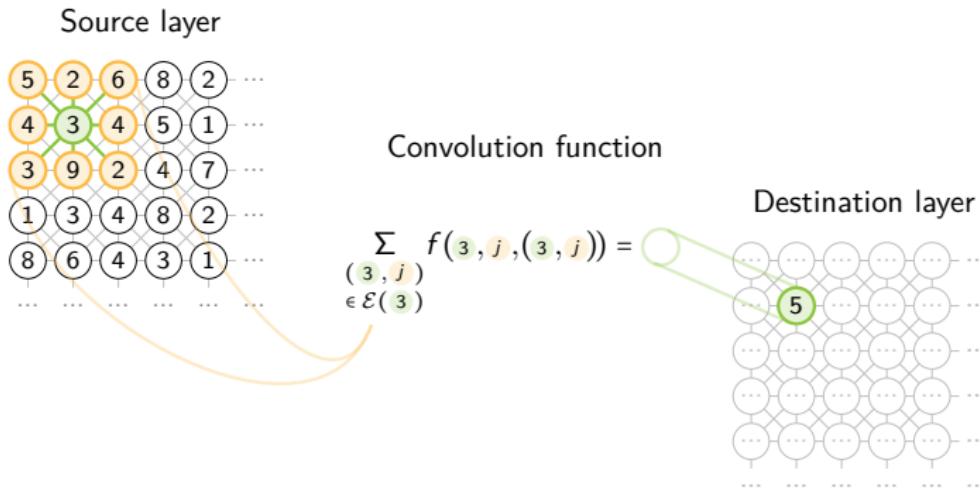
Brief introduction to GCNNs

Convolution with a kernel in CNNs:



Brief introduction to GCNNs

Graph interpretation of convolution with kernel:



Brief introduction to GCNNs

Essentially, GCNNs can be seen as **generalizations** of CNNs, where:

- **graphs**, with features associated to nodes and edges, are used instead of tensors;
- **convolution** is performed with a **function** instead of a kernel, such as:

$$v_i = f(v_i, \sum_{(i,j) \in \mathcal{E}(i)} g(v_i, v_j, e_{ij}))$$

with v_i (resp. e_{ij}) feature vector of node (resp. edge).

Brief introduction to GCNNs

Essentially, GCNNs can be seen as **generalizations** of CNNs, where:

- **graphs**, with features associated to nodes and edges, are used instead of tensors;
- **convolution** is performed with a **function** instead of a kernel, such as:

$$v_i = f(v_i, \sum_{(i,j) \in \mathcal{E}(i)} g(v_i, v_j, e_{ij}))$$

with v_i (resp. e_{ij}) feature vector of node (resp. edge).

Brief introduction to GCNNs

Why using a GCNN?

In ML litterature (e.g. [Gasse et al., 2019]), GCNNs are known for:

- Being well-defined no matter the **input dimensions**;
 - It will be useful as our inputs have various dimensions.
- Being adapted to **sparse** graphs;
 - It will be useful as the graphs we use are sparse.

❓ How do we use GCNNs?

[Gasse et al., 2019] Exact combinatorial optimization with graph convolutional neural networks.

Brief introduction to GCNNs

Why using a GCNN?

In ML litterature (e.g. [Gasse et al., 2019]), GCNNs are known for:

- Being well-defined no matter the **input dimensions**;
 - It will be useful as our inputs have various dimensions.
- Being adapted to **sparse** graphs;
 - It will be useful as the graphs we use are sparse.

💡 How do we use GCNNs?

[Gasse et al., 2019] Exact combinatorial optimization with graph convolutional neural networks.

Brief introduction to GCNNs

Why using a GCNN?

In ML litterature (e.g. [Gasse et al., 2019]), GCNNs are known for:

- Being well-defined no matter the **input dimensions**;
 - ↪ It will be useful as our inputs have various dimensions.
- Being adapted to **sparse** graphs;
 - ↪ It will be useful as the graphs we use are sparse.

💡 How do we use GCNNs?

[Gasse et al., 2019] Exact combinatorial optimization with graph convolutional neural networks.

Brief introduction to GCNNs

Why using a GCNN?

In ML litterature (e.g. [Gasse et al., 2019]), GCNNs are known for:

- Being well-defined no matter the **input dimensions**;
 - ↪ It will be useful as our inputs have various dimensions.
- Being adapted to **sparse** graphs;
 - ↪ It will be useful as the graphs we use are sparse.

❓ How do we use GCNNs?

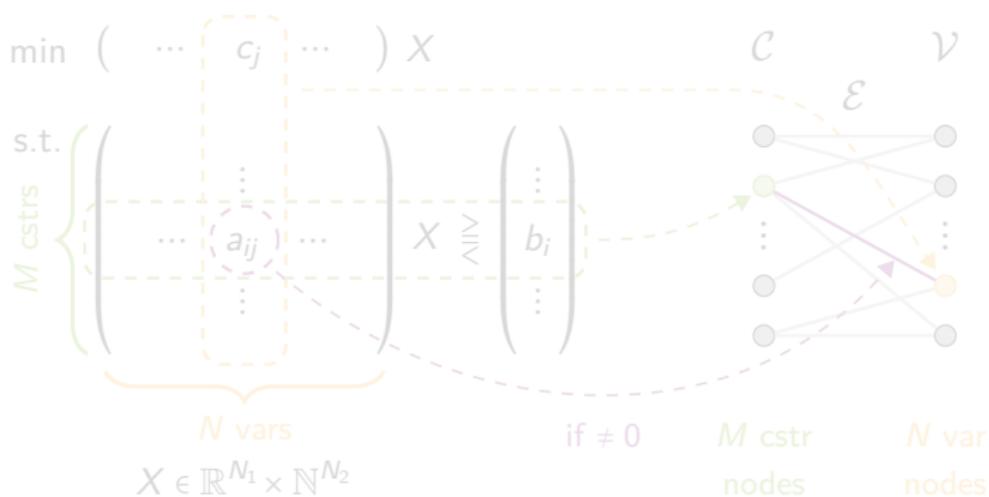
[Gasse et al., 2019] Exact combinatorial optimization with graph convolutional neural networks.

Plan

- 1 Introduction
- 2 Related works
- 3 Our reoptimization approach
- 4 Use of Graph Convolutional Neural Networks (GCNNs)
 - Brief introduction to GCNNs
 - Embedding a MILP into a graph
 - GCNN architecture
 - Framework with GCNN
- 5 Conclusion

Embedding a MILP into a graph

Following [Gasse et al., 2019], we map a MILP into a **bipartite graph of features**, to represent $(\mathcal{I}, \mathcal{S}, \mathcal{P})$, as follows:



[Gasse et al., 2019] Exact combinatorial optimization with graph convolutional neural networks

Embedding a MILP into a graph

Following [Gasse et al., 2019], we map a MILP into a **bipartite graph of features**, to represent $(\mathcal{I}, \mathcal{S}, \mathcal{P})$, as follows:

$$\begin{aligned}
 & \min \quad (\cdots \quad c_j \quad \cdots) X \\
 \text{s.t.} \quad & \left\{ \begin{pmatrix} \cdots & a_{ij} & \cdots \end{pmatrix} X \leq \begin{pmatrix} b_i \\ \vdots \end{pmatrix} \right. \\
 & \left. M \text{ cstrs} \right\} \\
 & N \text{ vars} \\
 & X \in \mathbb{R}^{N_1} \times \mathbb{N}^{N_2}
 \end{aligned}$$

\mathcal{C} \mathcal{V}
 \mathcal{E}

[Gasse et al., 2019] Exact combinatorial optimization with graph convolutional neural networks

Embedding a MILP into a graph

Following [Gasse et al., 2019], we map a MILP into a **bipartite graph of features**, to represent $(\mathcal{I}, \mathcal{S}, \mathcal{P})$, as follows:

[Gasse et al., 2019] Exact combinatorial optimization with graph convolutional neural networks

Embedding a MILP into a graph

Following [Gasse et al., 2019], we map a MILP into a **bipartite graph of features**, to represent $(\mathcal{I}, \mathcal{S}, \mathcal{P})$, as follows:

[Gasse et al., 2019] Exact combinatorial optimization with graph convolutional neural networks

Embedding a MILP into a graph

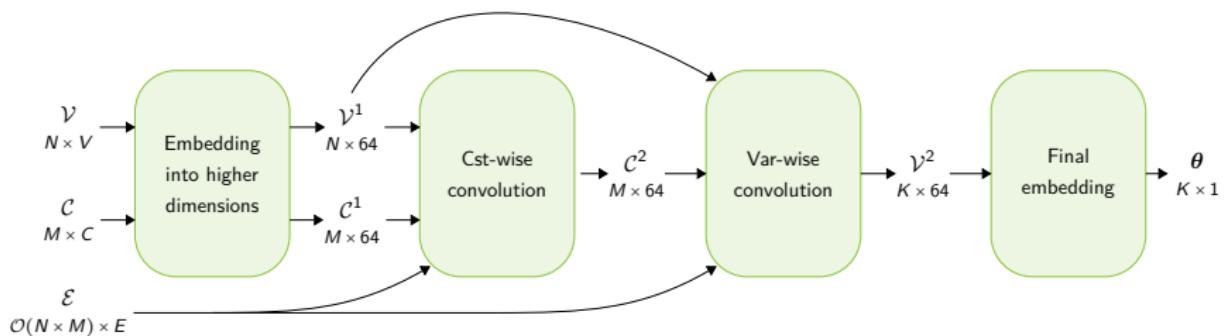
Following [Gasse et al., 2019], we map a MILP into a **bipartite graph of features**, to represent $(\mathcal{I}, \mathcal{S}, \mathcal{P})$, as follows:

[Gasse et al., 2019] Exact combinatorial optimization with graph convolutional neural networks

Plan

- 1 Introduction
- 2 Related works
- 3 Our reoptimization approach
- 4 Use of Graph Convolutional Neural Networks (GCNNs)
 - Brief introduction to GCNNs
 - Embedding a MILP into a graph
 - **GCNN architecture**
 - Framework with GCNN
- 5 Conclusion

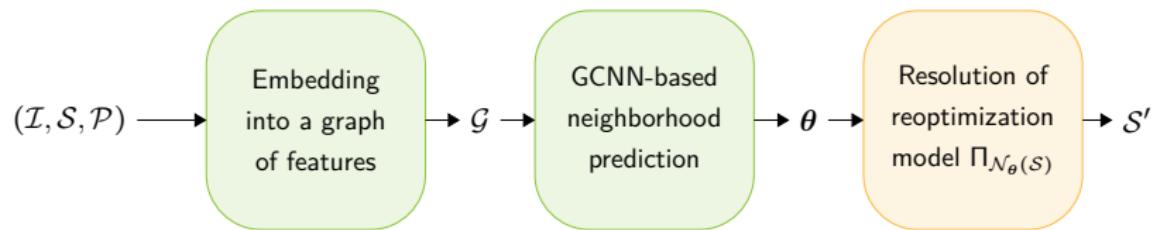
GCNN architecture



Plan

- 1 Introduction
- 2 Related works
- 3 Our reoptimization approach
- 4 Use of Graph Convolutional Neural Networks (GCNNs)
 - Brief introduction to GCNNs
 - Embedding a MILP into a graph
 - GCNN architecture
 - Framework with GCNN
- 5 Conclusion

Framework overview with GCNN



Plan

- 1 Introduction
- 2 Related works
- 3 Our reoptimization approach
- 4 Use of Graph Convolutional Neural Networks (GCNNs)
- 5 Conclusion

Conclusion, Work in progress & Open questions

Conclusion:

Design of an MILP-based approach, leveraging GCNN techniques, for reoptimizing solutions after instance perturbations.

Work in progress & Open questions:

- We have performed some data collections (given \mathcal{I} , computation of \mathcal{S} , simulation of \mathcal{P} , ...).
 ? What is a good θ ? What is a good $\mathcal{N}_\theta(\mathcal{S})$?
- We are currently implementing the GCNN model.
 ? Inputs: What are relevant graph features to consider?
 ? Outputs: How to have $\theta \in \mathbb{N}^K$?
- Can we easily apply our approach to other problems?

Conclusion, Work in progress & Open questions

Conclusion:

Design of an MILP-based approach, leveraging GCNN techniques, for reoptimizing solutions after instance perturbations.

Work in progress & Open questions:

- We have performed some data collections (given \mathcal{I} , computation of \mathcal{S} , simulation of \mathcal{P} , ...).
 ? What is a good θ ? What is a good $\mathcal{N}_\theta(\mathcal{S})$?
- We are currently implementing the GCNN model.
 ? Inputs: What are relevant graph features to consider?
 ? Outputs: How to have $\theta \in \mathbb{N}^K$?
- Can we easily apply our approach to other problems?

Conclusion, Work in progress & Open questions

Conclusion:

Design of an MILP-based approach, leveraging GCNN techniques, for reoptimizing solutions after instance perturbations.

Work in progress & Open questions:

- We have performed some data collections (given \mathcal{I} , computation of \mathcal{S} , simulation of \mathcal{P} , ...).
 - ?
 - What is a good θ ? What is a good $\mathcal{N}_\theta(\mathcal{S})$?
- We are currently implementing the GCNN model.
 - ?
 - Inputs: What are relevant graph features to consider?
 - ?
 - Outputs: How to have $\theta \in \mathbb{N}^K$?
- Can we easily apply our approach to other problems?

Conclusion, Work in progress & Open questions

Conclusion:

Design of an MILP-based approach, leveraging GCNN techniques, for reoptimizing solutions after instance perturbations.

Work in progress & Open questions:

- We have performed some data collections (given \mathcal{I} , computation of \mathcal{S} , simulation of \mathcal{P} , ...).
 - ?
 - What is a good θ ? What is a good $\mathcal{N}_\theta(\mathcal{S})$?
- We are currently implementing the GCNN model.
 - ?
 - Inputs: What are relevant graph features to consider?
 - ?
 - Outputs: How to have $\theta \in \mathbb{N}^K$?
- Can we easily apply our approach to other problems?

References I

- Archetti, C., Bertazzi, L., and Speranza, M. G. (2003). Reoptimizing the Traveling Salesman Problem. *Networks*, 42(3):154–159.
- Böckenhauer, H.-J., Hromkovič, J., Mömke, T., and Widmayer, P. (2008). On the hardness of reoptimization. In Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., and Bieliková, M., editors, *SOFSEM 2008: Theory and Practice of Computer Science*, pages 50–65, Berlin, Heidelberg. Springer Berlin Heidelberg.

References II

- Gasse, M., Chételat, D., Ferroni, N., Charlin, L., and Lodi, A. (2019).
Exact combinatorial optimization with graph convolutional neural networks.
- Lodi, A., Mossina, L., and Rachelson, E. (2020).
Learning to handle parameter perturbations in Combinatorial Optimization: An application to Facility Location.
EURO Journal on Transportation and Logistics, 9(4):100023.
- Morabit, M., Desaulniers, G., and Lodi, A. (2023).
Learning to repeatedly solve routing problems.
Networks, n/a(n/a).

References III

- Schäffter, M. W. (1997).
Scheduling with forbidden sets.
Discrete Applied Mathematics, 72(1):155–166.
Models and Algorithms for Planning and Scheduling Problems.
- Xavier, A. S., Qiu, F., and Ahmed, S. (2021).
Learning to solve large-scale security-constrained Unit Commitment Problems.
INFORMS Journal on Computing, 33(2):739–756.

Embedding a MILP into a graph - Variable features

Variable features:

To each variable node in \mathcal{V} , with corresponding MILP variable X , we associate $F_v = 7$ features related to the **model** and $(\mathcal{I}, \mathcal{S}, \mathcal{P})$:

- `is_binary` $\in \{0, 1\}$: whether X is binary;
- `obj_coef` $\in [-1, 1]$: objective coefficient related to X (normalized w.r.t. largest absolute objective coefficient);
- `has_lb` $\in \{0, 1\}$: whether X is bounded by a lb;
- `has_ub` $\in \{0, 1\}$: whether X is bounded by an ub;
- `sol_at_lb` $\in \{0, 1\}$: whether X value in \mathcal{S} equals its lb;
- `sol_at_ub` $\in \{0, 1\}$: whether X value in \mathcal{S} equals its ub;
- `sol_val` $\in [0, 1]$: X value in \mathcal{S} (normalized).

Embedding a MILP into a graph - Constraint features

Constraint features:

To each constraint node in \mathcal{C} , we associate $F_c = 5$ features related to the **model** and $(\mathcal{I}, \mathcal{S}, \mathcal{P})$:

- `cos_sim` $\in [-1, 1]$: cosine similarity between constraint coefficients and objective coefficients;
- `is_equality` $\in \{0, 1\}$: whether the constraint is an equality one;
- `is_lower_inequality` $\in \{0, 1\}$: whether the constraint is a lower inequality one;
- `rhs` $\in [-1, 1]$: right-hand side (normalized w.r.t. largest constraint coefficient);
- `rhs_chg` $\in \mathbb{R}$: right-hand side change due to perturbations (normalized w.r.t. largest constraint coefficients before perturbations).

Embedding a MILP into a graph - Edge features

Edge features:

To each edge in \mathcal{E} , we associate $F_e = 1$ feature related to the **model** and $(\mathcal{I}, \mathcal{S}, \mathcal{P})$:

- **coef** $\in [-1, 1]$: coefficient (normalized w.r.t. largest constraint coefficient).

GCNN architecture - Convolutions

Constraint-wise and variable-wise convolutions:

$$\mathbf{c}_i \leftarrow \mathbf{f}_{cst} \left(\mathbf{c}_i, \sum_{j, (i,j) \in \mathcal{E}} \mathbf{g}_{cst}(\mathbf{c}_i, \mathbf{v}_j, \mathbf{e}_{i,j}) \right),$$

$$\mathbf{v}_j \leftarrow \mathbf{f}_{var} \left(\mathbf{v}_j, \sum_{i, (i,j) \in \mathcal{E}} \mathbf{g}_{var}(\mathbf{c}_i, \mathbf{v}_j, \mathbf{e}_{i,j}) \right).$$

where \mathbf{f}_{cst} , \mathbf{f}_{var} , \mathbf{g}_{cst} and $\mathbf{g}_{var} \simeq$ 2-layer perceptrons with relu activation functions.