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Motivating example - Lot Sizing Problem (LSP)

Lot Sizing Problem (LSP):
Given:
● a planning horizon discretized into periods;
● a set of machines with limited capacities;
● a set of items, such that each item has:

▸ initial inventory,
▸ demands over time periods,
▸ production unit and fixed setup resource consumption,
▸ setup, production, inventory and lost sales unitary costs;

define a production plan minimizing the total cost
(setup, production, inventory and lost sales).
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Motivating example - LSP solution

Productions on one machine:
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Motivating example - LSP MILP model

LSP MILP model:

min setup + production + inventory + lost sales costs

s.t. production and inventory vs demand and lost sales constraints
capacity constraints
minimum production constraints
[...]

Ymit ∈ {0, 1} m ∈ {machines}, i ∈ {items}, t ∈ {periods}
Xmit ≥ 0 m ∈ {machines}, i ∈ {items}, t ∈ {periods}
[...]
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Motivating example - LSP perturbation

Productions perturbed due to machine breakdown:
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General context - Original setting

Original setting:
● NP-hard combinatorial optimization problem (e.g. LSP)

modeled as a MILP Π;
● I instance;
● S (optimal or near-optimal) solution of I:

▸ obtained after a long computation time (e.g. hours),
▸ using an MILP solver.
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General context - Perturbed setting

Perturbed setting:
A short time before the execution of S:
● Perturbations P are observed (e.g. machine breakdown),

▸ affecting the coefficients of I (e.g. capacity coefficient),
▸ and invalidating S (w.r.t. feasibility or optimality).

● A new instance, “perturbed instance”, I ′ can be defined:
▸ with the same dimensions as I,
▸ but with coefficients slightly different.
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General context - Needs

Needs:
Finding a new solution S ′ while satisfying various criteria:
(a) adaptation of S ′ to perturbations;
(b) good quality of S ′;
(c) short computation time (e.g. a few tens of seconds or minutes);
(d) controlled deviation of S ′ from original solution S.

? How to compute such an S ′?
- using an MILP-based approach;
- involving Machine Learning (ML).
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Related works - Reoptimization of NP-hard problems

Reoptimization of NP-hard problems:
Several works on reoptimizing NP-hard problems, such as works on:
● Scheduling Problems, e.g. [Schäffter, 1997];
● Traveling Sales Problems, e.g. [Archetti et al., 2003];
● Steiner Tree Problems, e.g. [Böckenhauer et al., 2008].

� the methods can only be applied to these specific problems
and assume quite restrictive instance perturbations.

[Schäffter, 1997] Scheduling with forbidden sets
[Archetti et al., 2003] Reoptimizing the Traveling Salesman Problem
[Böckenhauer et al., 2008] On the hardness of reoptimization
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Related works - ML and MILP reoptimization

ML and MILP reoptimization:
Several works on MILP reoptimization leveraging ML, among them:
● [Xavier et al., 2021]
� ML for initializing a separation-like algorithm;
� limited to problems solvable through separation techniques.
● [Lodi et al., 2020] and [Morabit et al., 2023]
� ML for defining a reoptimization problem whose feasible
solution space is reduced compared to the original one;
� require training an ML model for each instance dimension.

[Xavier et al., 2021] Learning to solve large-scale security-constrained Unit Commitment Problems
[Lodi et al., 2020] Learning to handle parameter perturbations in Comb. Opt.: an application to Facility Location
[Morabit et al., 2023] Learning to repeatedly solve routing problems
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Related works - Our ambition

Our ambition in relation to existing works:
Designing an MILP-based approach, leveraging ML techniques,
for reoptimizing solutions after instance perturbations, which:

- considers “complex” perturbations;
- is applicable to various problems;
- handles instances of various dimensions.
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Towards ML-guided MILP reopt. - Original setting

F(I)
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Towards ML-guided MILP reopt. - Perturbed setting
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Towards ML-guided MILP reopt. - Naive approach
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Towards ML-guided MILP reopt. - Naive approach

Naive approach:
Obtain S ′ by solving original MILP Π, on new instance I ′.
So that:

(a)✓ S ′ is feasible w.r.t. I ′;
but:

(b)(c)✗ computing a “good” S ′ is likely to take a long time;
(d)✗ S ′ is free to deviate indefinitely from S.
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Towards ML-guided MILP reopt. - First assumption

First assumption:
We assume that we know a repairing method with which, from S,
we can build S ′r a new solution feasible w.r.t. I ′.
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Towards ML-guided MILP reopt. - Baseline approach
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Towards ML-guided MILP reopt. - Baseline approach

Baseline approach:
Obtain S ′ by solving original MILP Π, on new instance I ′, and
warm-started with S ′r .
So that:

(a)✓ S ′ is feasible w.r.t. I ′;
but:

(b)(c)≈ computing a “good” S ′ may still take a long time;
(d)✗ S ′ is still quite free to deviate indefinitely from S.
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Towards ML-guided MILP reopt. - Second assumption

Second assumption:
We assume that we can define N(S) a neighborhood around S,
which contains the repaired solution S ′r .

Mathieu Lerouge ML-guided MILP reoptimization February 28, 2025 17 / 31



Introduction Related works Our reoptimization approach Use of GCNNs Conclusion

Towards ML-guided MILP reopt. - Local reoptimization
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Towards ML-guided MILP reopt. - Local reoptimization

Local reoptimization:
Obtain S ′ by solving a new MILP ΠN(S), which:
● is built on the original MILP Π;
● has constraints enforcing S ′ to be in neighborhood N(S);
● and is warm-started with S ′r .

So that:
(a)✓ S ′ is feasible w.r.t. I ′;

(b)(c)✓ computing a “good” S ′ might be more efficient,
as the solution space is smaller;

(d)✓ the deviation between S and S ′ is controlled.

� Use Machine Learning (ML) to choose the neighborhood N(S).
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Parametric neighborhood

Parametric neighborhood:
Use of a parametric neighborhood Nθ(S),
with θ ∈ NK vector of parameters controlling its size
(where dimension K depends on the studied problem).
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Parametric neighborhood
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Parametric neighborhood - LSP neighborhood

Let S be a LSP solution, m a machine and i an item.

Setups of item i on machine m:

t
0 T

t1

t2

tk

S, as a MILP solution of Π, verifies:
● Y ⋆mit = 1, for t ∈ {t1, t2, . . . , tk};
● Y ⋆mit = 0, otherwise.
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Parametric neighborhood - LSP neighborhood

Given S, m and i , we choose θmi ∈ N.

Periods close to/far from setups:

−θmi +θmi −θmi +θmi

−θmi +θmi

t
0 T

t1

t2

tk

We call:
● t ∈ : periods close to setups of i on m;
● t ∈ : periods far from setups of i on m.

Mathieu Lerouge ML-guided MILP reoptimization February 28, 2025 21 / 31



Introduction Related works Our reoptimization approach Use of GCNNs Conclusion

Parametric neighborhood - LSP neighborhood

Given S, m and i , we choose θmi ∈ N.

Periods close to/far from setups:

−θmi +θmi −θmi +θmi

−θmi +θmi

t
0 T

t1

t2

tk

We call:
● t ∈ : periods close to setups of i on m;
● t ∈ : periods far from setups of i on m.

Mathieu Lerouge ML-guided MILP reoptimization February 28, 2025 21 / 31



Introduction Related works Our reoptimization approach Use of GCNNs Conclusion

Parametric neighborhood - LSP neighborhood

Given S, m and i , we choose θmi ∈ N.

Periods close to/far from setups:

−θmi +θmi −θmi +θmi

−θmi +θmi

t
0 T

t1

t2

tk

We call:
● t ∈ : periods close to setups of i on m;
● t ∈ : periods far from setups of i on m.

Mathieu Lerouge ML-guided MILP reoptimization February 28, 2025 21 / 31



Introduction Related works Our reoptimization approach Use of GCNNs Conclusion

Parametric neighborhood - LSP neighborhood

Given S, we choose θmi ∈ N for each machine m and item i .

Neighborhood of S - Allowed operations on setups:
−θmi +θmi −θmi +θmi

−θmi +θmi

from S: t
0 T

to S ′: t
0 T

with S ′ ∈ Nθ(S).

New MILP model ΠNθ(S)
contains:

● Ymit = 0, for t ∈ (far from setups);
● Ymit ∈ {0, 1}, for t ∈ (close to setups).
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● Ymit ∈ {0, 1}, for t ∈ (close to setups).
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Framework

(I,S,P)

ML-based
neighborhood

prediction
θ

Resolution of
reoptimization
model ΠNθ(S)

S
′

? What ML model to choose for predicting θ?
� Dimensions of the inputs (I,S,P) may vary.
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Brief introduction to GCNNs
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Brief introduction to GCNNs

Graph interpretation of convolution with kernel:
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Brief introduction to GCNNs

Essentially, GCNNs can be seen as generalizations of CNNs, where:
- graphs, with features associated to nodes and edges,

are used instead of tensors;
- convolution is performed with a function instead of a kernel,

such as:
vi = f (vi , ∑

(i ,j)∈E(i)
g(vi , vj , eij))

with vi (resp. eij) feature vector of node (resp. edge).
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Brief introduction to GCNNs

Why using a GCNN?
In ML litterature (e.g. [Gasse et al., 2019]), GCNNs are known for:
● Being well-defined no matter the input dimensions;
↪ It will be useful as our inputs have various dimensions.
● Being adapted to sparse graphs;
↪ It will be useful as the graphs we use are sparse.

? How do we use GCNNs?

[Gasse et al., 2019] Exact combinatorial optimization with graph convolutional neural networks.
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Embedding a MILP into a graph

Following [Gasse et al., 2019], we map a MILP into a bipartite
graph of features, to represent (I,S,P), as follows:

min ( ⋯ cj ⋯ ) X

s.t. ⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⋮

⋯ aij ⋯

⋮

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

X ⪌

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⋮

bi

⋮

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

X ∈ RN1×NN2

M
cs

tr
s

N vars

⋮

C

M cstr
nodes

⋮

V

N var
nodes

E

if ≠ 0

[Gasse et al., 2019] Exact combinatorial optimization with graph convolutional neural networks
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GCNN architecture
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convolution
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Framework overview with GCNN

(I,S,P)

Embedding
into a graph
of features

G

GCNN-based
neighborhood

prediction
θ

Resolution of
reoptimization
model ΠNθ(S)

S
′
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Conclusion, Work in progress & Open questions

Conclusion:
Design of an MILP-based approach, leveraging GCNN techniques,
for reoptimizing solutions after instance perturbations.

Work in progress & Open questions:
● We have performed some data collections

(given I, computation of S, simulation of P, ...).
? What is a good θ? What is a good Nθ(S)?
● We are currently implementing the GCNN model.
? Inputs: What are relevant graph features to consider?
? Outputs: How to have θ ∈ NK ?
● Can we easily applied our approach to other problems?
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Embedding a MILP into a graph - Variable features

Variable features:
To each variable node in V, with corresponding MILP variable X ,
we associate Fv = 7 features related to the model and (I,S,P):
● is_binary ∈ {0, 1}: whether X is binary;
● obj_coef ∈ [−1, 1]: objective coefficient related to X

(normalized w.r.t. largest absolute objective coefficient);
● has_lb ∈ {0, 1}: whether X is bounded by a lb;
● has_ub ∈ {0, 1}: whether X is bounded by an ub;
● sol_at_lb ∈ {0, 1}: whether X value in S equals its lb;
● sol_at_ub ∈ {0, 1}: whether X value in S equals its ub;
● sol_val ∈ [0, 1]: X value in S (normalized).
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Embedding a MILP into a graph - Constraint features

Constraint features:
To each constraint node in C, we associate Fc = 5 features
related to the model and (I,S,P):
● cos_sim ∈ [−1, 1]: cosine similarity between constraint coefficients and

objective coefficients;
● is_equality ∈ {0, 1}: whether the constraint is an equality one;
● is_lower_inequality ∈ {0, 1}: whether the constraint is a lower

inequality one;
● rhs ∈ [−1, 1]: right-hand side

(normalized w.r.t. largest constraint coefficient);
● rhs_chg ∈ R: right-hand side change due to perturbations

(normalized w.r.t. largest constraint coefficients before perturbations).
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Embedding a MILP into a graph - Edge features

Edge features:
To each edge in E , we associate Fe = 1 feature
related to the model and (I,S,P):
● coef ∈ [−1, 1]: coefficient

(normalized w.r.t. largest constraint coefficient).
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GCNN architecture - Convolutions

Constraint-wise and variable-wise convolutions:

c i ← f cst
⎛

⎝
c i , ∑

j, (i ,j)∈E
gcst(c i , v j , e i ,j)

⎞

⎠
,

v j ← f var
⎛

⎝
v j , ∑

i , (i ,j)∈E
gvar(c i , v j , e i ,j)

⎞

⎠
.

where f cst , f var , gcst and gvar ≃ 2-layer perceptrons with relu
activation functions.
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